Organische Elektronik Elektronische Prozesse in organischen Halbleitern

6. Angeregte Moleküle in kristallinen Phasen – Frenkel-Exziton

Albert-Ludwigs-Universität Freiburg

Dr. Till Biskup Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Sommersemester 2019

UNI FREIBURG

- In der organischen Elektronik spielen Wechselwirkungen einer großen Zahl von Molekülen eine wichtige Rolle.
- A Das einfachste Konzept f
 ür ein Exziton ist eine regelm
 ä
 ßige, lineare Anordnung identischer Molek
 üle.
- Q Die Wechselwirkung einer großen Zahl von Molekülen führt zu kontinuierlichen Energiebändern.
- Kopplungsstärke und Variation der Energien entscheiden über kohärenten oder inkohärenten Energietransfer.
- Abhängig vom Modus der Kopplung zwischen Molekülen dominiert Dexter- oder Förster-Energietransfer.

Ein Molekül pro Einheitszelle

Zwei Moleküle pro Einheitszelle

Kohärente und inkohärente Bewegung von Frenkel-Exzitonen

Förster- und Dexter-Energietransfer

Exzitonen Elementare Anregungen des Festkörpers

🞓 Exziton

(von *excitation*, Anregung), gebundenes Elektron-Loch-Paar in einem Isolator bzw. Halbleiter, elementare Anregung des Festkörpers, Quasiteilchen

- ► Konzept aus der Festkörperphysik
 - gilt streng nur für kristalline Festkörper
 - gut geeignet f
 ür das Verst
 ändnis von Anregungen in organischen molekularen Festk
 örpern und Halbleitern
- zwei Arten
 - Frenkel-Exziton
 - Wannier-Mott-Exziton

Exzitonen Grafische Darstellung der beiden Grenzfälle

UNI FREIBURG

Frenkel-Exziton

- stark gebunden
- geringe Ausdehnung

Wannier-Mott-Exziton

- schwach gebunden
- große Ausdehnung

Abbildungen: D. Meyer, Dissertation, Freiburg 2017

Ziel

- konzeptioneller Rahmen f
 ür optische Anregung in kristallinen Phasen
- einfachster Ansatz
 - regelmäßige, lineare Anordnung N identischer Moleküle i
- Eigenschaften der individuellen Moleküle i
 - Wellenfunktion des elektronischen Grundzustands: Ψ⁰_i
 - zugehöriger Hamilton-Operator: Ĥ_i
 - Energie des Grundzustands: E_i^0
- Kopplung zwischen Molekülen i und j
 - durch die elektrostatische Interaktion V_{ij}
 - analog zur Situation im Dimer

Hamilton-Operator des Gesamtsystems:

$$\hat{\mathcal{H}} = \sum_{i=1}^{N} \hat{\mathcal{H}}_i + \frac{1}{2} \sum_{\substack{i,j=1\\i\neq j}}^{N} V_{ij}$$

mit den Hamilton-Operatoren $\hat{\mathcal{H}}_i$ der individuellen Moleküle *i* und dem Wechselwirkungsterm V_{ij} zwischen den Molekülen Wellenfunktion Ψ_{GS} für den Grundzustand des Systems:

$$\Psi_{\rm GS} = \mathcal{A} \prod_{i=1}^{N} \Psi_i^0$$

mit dem Antisymmetrisierungs-Operator $\mathcal R$

Sommersemester 2019

Grundzustand Lineares, geordnetes Ensemble gekoppelter Moleküle

Gesamtenergie E_g des Grundzustands:

$$E_{\rm g} = \langle \Psi_{\rm GS} | \hat{\mathcal{H}} | \Psi_{\rm GS} \rangle = \sum_{i=1}^{N} E_i^0 + D$$

mit

$$D = \left\langle \mathcal{A} \prod_{i=1}^{N} \Psi_{i}^{0} \middle| \frac{1}{2} \sum_{\substack{i,j=1\\i \neq j}}^{N} V_{ij} \middle| \mathcal{A} \prod_{i=1}^{N} \Psi_{i}^{0} \right\rangle$$

 Die Energieverschiebung D resultiert aus der Van-der-Waals-Wechselwirkung zwischen den Molekülen.

Angeregter Zustand Lineares, geordnetes Ensemble gekoppelter Moleküle

- angeregter Zustand
 - Anregung eines Moleküls j im Ensemble
 - wird durch die Kopplung V_{ij} an die anderen Moleküle weitergegeben
- Alle Moleküle sind identisch.
 - Es ist egal, welches Molekül angeregt wird.
 - N mögliche Realisierungen des angeregten Systems
- mechanisches Analogon
 - N mit Federn gekoppelte Pendel
 - Anregung eines der gekoppelten Pendel
 - Propagation der Anregung durch die Federn

Wellenfunktion $\Psi_{\rm E}^{j}$ des gekoppelten Systems für die Anregung des Moleküls *j*:

$$\Psi_{\rm E}^j = \Psi_j^* \sum_{\substack{i,j=1\\i\neq j}}^N \Psi_i^0$$

mit der Wellenfunktion Ψ_j^* des angeregten Moleküls und der Wellenfunktionen Ψ_i^0 der verbleibenden Moleküle in ihrem jeweiligen Grundzustand.

Für identische Moleküle gibt es *N* Wellenfunktionen $\Psi_{\rm E}^{j}$, die ein einfach angeregtes System beschreiben.

Linearkombination der Wellenfunktionen mit den zugehörigen Koeffizienten *c_j* zur Lösung der Schrödinger-Gleichung:

$$\Psi_{\rm E} = \sum_{j=1}^N c_j \Psi_{\rm E}^j$$

Koeffizienten durch Variationsprinzip (vgl. LCAO)

Annahmen

- nur nächste Nachbarn
- Distanz a zwischen benachbarten Molekülen
- periodische Randbedingungen

DRG

Angeregter Zustand Lineares, geordnetes Ensemble gekoppelter Moleküle

Ergebnis: *N* Eigenfunktionen:

$$\Psi_{\rm E}(k) = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \exp(ikaj) \Psi_{\rm E}^{j}$$

mit

$$k = 0, \pm \frac{2\pi}{Na}, \pm \frac{4\pi}{Na}, \dots, \pm \frac{\pi}{a}$$

und der Distanz a zwischen benachbarten Molekülen.

Spektrum der Eigenwerte durch Einsetzen der Eigenfunktionen in die Schrödinger-Gleichung

Hamilton-Operator des gekoppelten linearen Systems

$$\hat{\mathcal{H}} = \sum_{i=1}^{N} \hat{\mathcal{H}}_i + \frac{1}{2} \sum_{\substack{i,j=1\\i\neq j}}^{N} V_{ij}.$$

Eigenwerte der N Zustände

$$E_{\mathrm{E}}(k) = \langle \Psi_{\mathrm{E}}(k) | \hat{\mathcal{H}} | \Psi_{\mathrm{E}}(k) \rangle = \sum_{\substack{i,j=1\\i \neq j}}^{N} E_{j}^{0} + E_{j}^{*} + D' + 2\beta \cos(ka)$$

IBURG

Die Energieverschiebung *D'* des angeregten Zustands resultiert aus der (i.d.R. gegenüber dem Grundzustand größeren) Van-der-Waals-Wechselwirkung zwischen den Molekülen:

$$D' = \left\langle \Psi_{\rm E}^{j} \middle| \frac{1}{2} \sum_{\substack{i,j=1\\i\neq j}}^{N} V_{ij} \middle| \Psi_{\rm E}^{j} \right\rangle$$

Spektroskopisch zugänglich sind i.d.R. nur Energiedifferenzen:

 $\Delta E_{\rm E}(k) = \Delta E_i + \Delta D + 2\beta \cos(ka)$

mit

$$\Delta E_j = E_j^* - E_j^0$$
 und $\Delta D = D - D'$

Die Wechselwirkungsenergie (Resonanzenergie) β zwischen benachbarten Molekülen ist gegeben zu:

$$\beta = \left\langle \Psi_{\rm E}^{j} \middle| \frac{1}{2} \sum_{\substack{i,j=1\\i\neq j}}^{N} V_{ij} \middle| \Psi_{\rm E}^{i} \right\rangle$$

URG

. E

Das Frenkel-Exziton

Interpretation des Ergebnisses des Formalismus

Dimer

- zwei stationäre Lösungen: $\Psi_{E\pm} = (1/\sqrt{2})(\Psi_1^*\Psi_2 \pm \Psi_1\Psi_2^*)$
- zwei Eigenzustände: $\Delta E_{\pm} = \Delta E_1 + \Delta D \pm \beta$, aufgespalten durch 2β
- N gekoppelte Moleküle
 - N Lösungen
 - Superposition der Wellenfunktionen
 - Satz delokalisierter Wellenfunktionen
 - für großes N: Band angeregter Zustände mit der Breite 4β
- periodische Grenzbedingungen
 - jeweils zwei Nachbarn zum Wechselwirken
 - Grund f
 ür Faktor 2 zwischen Dimeraufspaltung (2β) und Breite des Exzionenbands (4β)

Das Frenkel-Exziton

Energieniveauschemata für N ungekoppelte und gekoppelte Moleküle

Ein Molekül pro Einheitszelle

Zwei Moleküle pro Einheitszelle

Kohärente und inkohärente Bewegung von Frenkel-Exzitonen

Förster- und Dexter-Energietransfer

UNI FREIBURG

- bislang vorgestellter Formalismus
 - Anregungen geordeter Systeme einzelner Moleküle
 - molekulare Kristalle mit einem Molekül pro Einheitszelle
- reale Systeme (molekulare Kristalle)
 - meist Dimer in der Einheitszelle
 - feste Anordnung der Moleküle im Dimer
 - macht eine Erweiterung des Formalismus notwendig
- Folgen
 - Dimer f
 ührt zur Aufspaltung des angeregten Zustands
 - Übergangsmomente abhängig von der Anordnung der Moleküle zueinander
- Wechselwirkung zwischen Einheitszellen im Kristall
- Aufspaltung in zwei Bänder: Davydov-Aufspaltung

Energieniveauschema

N gekoppelte Moleküle mit je zwei Molekülen in der Einheitszelle

IBURG

Ein Molekül pro Einheitszelle

Zwei Moleküle pro Einheitszelle

Kohärente und inkohärente Bewegung von Frenkel-Exzitonen

Förster- und Dexter-Energietransfer

- Voraussetzung des bisher entwickelten Exzitonen-Modells
 - perfekter Molekülkristall
 - Moleküle in Ruhe
 - Frenkel-Exziton bewegt sich kohärent wellenartig, bis es strahlend oder nichtstrahlend zerfällt.
- reale Situation
 - Molekülkristall niemals perfekt
 - Übergangsenergien zwischen Molekülen können variieren
 - zusätzlicher Term $\Delta \hat{\mathcal{H}}_i$ im Hamilton-Operator

$$\hat{\mathcal{H}} = \sum_{i=1}^{N} (\hat{\mathcal{H}}_i + \Delta \hat{\mathcal{H}}_i) + \frac{1}{2} \sum_{\substack{i,j=1\\i\neq j}}^{N} V_{ij}$$

Energieniveaus hängen vom Verhältnis von $\Delta \hat{\mathcal{H}}_i$ und V_{ij} ab.

- $\blacktriangleright \quad V_{ij} > \Delta \hat{\mathcal{H}}_i$
 - gilt für bislang diskutierte Situationen
 - Frenkel-Exzitonen sind gute Beschreibung der angeregten Zustände des Systems
 - Energietransfer wellenartig: kohärenter Energietransfer
- $\blacktriangleright \quad V_{ij} < \Delta \hat{\mathcal{H}}_i$
 - Exzitonenband wird zerstört
 - Absorptionsspektrum liefert die Energieverteilung der individuellen molekularen Absorber
 - Absorptionsspektren normalerweise Gauß-Kurven
 - angeregter Zustand am besten als lokalisierter angeregter Zustand eines individuellen Moleküls beschreibbar
 - inkohärenter Energietransfer

IBURG

- Gründe für die "Unvollkommenheiten":
 - (statische) energetische Unordnung
 - kollektive Bewegung der Moleküle bei endlicher Temperatur (Phononen)
- Defekte und Phononen können Exzitonen streuen
 - Kohärenz geht verloren
 - Dephasierungszeit: Zeitskala des Kohärenzverlustes
 - Dephasierungszeit verkürzt sich mit steigender Temperatur (durch den Einfluss der Phononen)
- Modi des nichtstrahlenden inkohärenten Energietransfers
 - abhängig vom Kopplungspotential
 - Förster- und Dexter-Resonanzenergietransfer.

Ein Molekül pro Einheitszelle

Zwei Moleküle pro Einheitszelle

Kohärente und inkohärente Bewegung von Frenkel-Exzitonen

Förster- und Dexter-Energietransfer

Inkohärenter Anregungsenergietransfer Generelle Möglichkeiten

- inkohärenter Anregungsenergietransfer
 - von einem Don(at)or D zu einem Akzeptor A
- zwei generelle Möglichkeiten
 - strahlender (trivialer) Transfer
 - nichtstrahlender Transfer
- strahlender Transfer
 - Emission und Reabsorption von Licht
 - zwei aufeinanderfolgende Schritte
- nichtstrahlender Transfer
 - durch quantenmechanische Kopplung zwischen Molekülen
 - ein Schritt

Inkohärenter Anregungsenergietransfer Strahlender (trivialer) Transfer

 $D^* \rightarrow D + h\nu$ $h\nu + A \rightarrow A^*$

- Mechanismus
 - Emission und Reabsorption von Licht
 - zwei aufeinanderfolgende Schritte
- Voraussetzung
 - effiziente Emission und Absorption
 - keine weiteren Wechselwirkungen notwendig
- Charakteristika und Auftreten
 - langreichweitig
 - häufig in verdünnter Lösung

Inkohärenter Anregungsenergietransfer Nichtstrahlender Transfer

$$D^* + A \xrightarrow{Kopplung} D + A^*$$

- Mechanismus
 - Ein-Schritt-Prozess
 - zwei Mechanismen in Abhängigkeit von der dominierenden Kopplung zwischen den Molekülen
- Voraussetzung
 - quantenmechanische Kopplung zwischen Molekülen
 - Coulomb- und Austauschwechselwirkung
- Charakteristika und Auftreten
 - vorherrschend in dichten Medien
 - Normalfall in organischen elektronischen Bausteinen

Inkohärenter Anregungsenergietransfer Die zwei Modi des nichtstrahlenden Energietransfers

Förster-Transfer

- Abstand zwischen D und A ist groß verglichen mit der Größe des jeweiligen Moleküls
- Kopplung durch elektromagnetische Wechselwirkung zwischen Dipolen (Coulomb-Wechselwirkung)
- durch den freien Raum (through space)

Dexter-Transfer

- Kopplung durch Austauschwechselwirkung
- über Bindungen (through bond)
- Details zu Förster- und Dexter-Mechanismus folgen später.
- zunächst allgemeinere quantenmechanische Betrachtung des stahlungslosen inkohärenten Energietransfers

Die quantenmechanische Kopplung für den Energietransfer ist klein, deshalb kann die Ratenkonstante des Energietransfers aus *Fermis Goldener Regel* abgeleitet werden:

$$k_{\rm ET} = \frac{2\pi}{\hbar} \left| \langle \Psi_{\rm f} | \hat{\mathcal{H}}' | \Psi_{\rm i} \rangle \right|^2 \rho_{\rm E}.$$

Dabei ist $\rho_{\rm E}$ die Zustandsdichte, die mit dem spektralen Überlapp *J* zwischen Donator-Emission $I_{\rm D}(\lambda)$ und Akzeptor-Absorption $\varepsilon_{\rm A}(\lambda)$ zusammenhängt:

$$J = \int I_{\rm D}(\lambda) \varepsilon_{\rm A}(\lambda) \lambda^4 {\rm d}\lambda.$$

Inkohärenter Anregungsenergietransfer Quantenmechanische Betrachtung

- Kopplungs-Hamilton-Operator
- enthält elektrostatische Wechselwirkung zwischen den Ladungsverteilungen von Donator und Akzeptor

$$\blacktriangleright \quad \beta = \langle \Psi_{\rm f} | \hat{\mathcal{H}}' | \Psi_{\rm i} \rangle$$

elektronische Wechselwirkungsenergie

Donator und Akzeptor bilden ein System mit

$$\Psi_{\rm i} = \mathcal{A} \Psi_{\rm D}^* \Psi_{\rm A}$$
 und $\Psi_{\rm f} = \mathcal{A} \Psi_{\rm D} \Psi_{\rm A}^*$.

 $\mathcal R$ ist der Antisymmetrisierungsoperator, Ψ enthält die elektronische und die Spinwellenfunktion.

i – initial; f – final

Das System besitzt zwei relevante, nicht unterscheidbare Elektronen, entsprechend gilt:

$$\Psi_{i} = \frac{1}{\sqrt{2}} \left[\Psi_{D}^{*}(1) \Psi_{A}(2) - \Psi_{D}^{*}(2) \Psi_{A}(1) \right]$$

und

$$\Psi_{f} = \frac{1}{\sqrt{2}} \left[\Psi_{D}(1) \Psi_{A}^{*}(2) - \Psi_{D}(2) \Psi_{A}^{*}(1) \right].$$

Einsetzen der Wellenfunktionen in die Gleichung für die elektronische Wechselwirkungsenergie β ergibt:

$$2\beta = \left\langle \left[\Psi_{\rm D}(1)\Psi_{\rm A}^{*}(2) - \Psi_{\rm D}(2)\Psi_{\rm A}^{*}(1) \right] \middle| \hat{\mathcal{H}}' \left| \left[\Psi_{\rm D}^{*}(1)\Psi_{\rm A}(2) - \Psi_{\rm D}^{*}(2)\Psi_{\rm A}(1) \right] \right\rangle$$

und entsprechend

$$\begin{split} 2\beta &= \left\langle \Psi_{\mathrm{D}}(1)\Psi_{\mathrm{A}}^{*}(2) \middle| \hat{\mathcal{H}}' \middle| \Psi_{\mathrm{D}}^{*}(1)\Psi_{\mathrm{A}}(2) \right\rangle \\ &- \left\langle \Psi_{\mathrm{D}}(1)\Psi_{\mathrm{A}}^{*}(2) \middle| \hat{\mathcal{H}}' \middle| \Psi_{\mathrm{D}}^{*}(2)\Psi_{\mathrm{A}}(1) \right\rangle \\ &- \left\langle \Psi_{\mathrm{D}}(2)\Psi_{\mathrm{A}}^{*}(1) \middle| \hat{\mathcal{H}}' \middle| \Psi_{\mathrm{D}}^{*}(1)\Psi_{\mathrm{A}}(2) \right\rangle \\ &+ \left\langle \Psi_{\mathrm{D}}(2)\Psi_{\mathrm{A}}^{*}(1) \middle| \hat{\mathcal{H}}' \middle| \Psi_{\mathrm{D}}^{*}(2)\Psi_{\mathrm{A}}(1) \right\rangle. \end{split}$$

Das lässt sich zusammenfassen und vereinfachen...

URG

Der erste und vierte Term bilden den Coulombterm β^{C} , der zweite und dritte Term den Austauschterm β^{E} :

$$\beta = \beta^{\rm C} - \beta^{\rm E}$$

mit

$$\beta^{\mathrm{C}} = \left\langle \Psi_{\mathrm{D}}(1)\Psi_{\mathrm{A}}^{*}(2) \middle| \hat{\mathcal{H}}' \middle| \Psi_{\mathrm{D}}^{*}(1)\Psi_{\mathrm{A}}(2) \right\rangle$$

und

$$\beta^{\mathrm{E}} = \left\langle \Psi_{\mathrm{D}}(1)\Psi_{\mathrm{A}}^{*}(2) \middle| \hat{\mathcal{H}}' \middle| \Psi_{\mathrm{D}}^{*}(2)\Psi_{\mathrm{A}}(1) \right\rangle.$$

C - Coulomb; E - exchange (Austausch)

Inkohärenter Anregungsenergietransfer Schemata für Förster- und Dexter-Energietransfer

- Voraussetzung
 - Abstand zwischen D und A groß gegenüber ihrer Größe
- Ansatz: Punkt-Dipol-Näherung
 - nur Dipol-Dipol-Wechselwirkung wird berücksichtigt
 - Näherung von Förster

$$\beta^{\rm C} \propto \frac{|\mu_{\rm D}||\mu_{\rm A}|}{r^3} \kappa$$

Dipolmomente μ_D von Donator und μ_A von Akzeptor, Donator-Akzeptor-Abstand *r*, Orientierungsfaktor κ mit

$$\kappa = \cos \phi - 3 \cos \theta_{\rm D} \cos \theta_{\rm A}$$

URG

Förster-Resonanzenergietransfer Orientierung der Übergangsdipolmomente und Orientierungsfaktor 8 D $\kappa^2 = 4$ $\theta_{\rm D}$ θΔ $\kappa^2 = 1$ $\kappa^2 = 2/3$ $\kappa^2 = 0$

Für die Rate des Förster-Energietransfers gilt allgemein:

$$k_{\rm ET}^{\rm F} \propto \frac{|\mu_{\rm D}|^2 |\mu_{\rm A}|^2}{r^6} \kappa^2 \,.$$

Für den austauschvermittelten Dexter-Energietransfer gilt:

$$\beta^{\rm E} \propto \exp\left(-\frac{r}{L}\right)$$
 und $k_{\rm ET}^{\rm D} \propto \exp\left(-\frac{2r}{L}\right) J$

mit der Konstante *L* abhängig vom effektiven gemittelten Orbitalradius von Donator- und Akzeptorzustand.

- Coulomb- und Austauschterm sind immer beide präsent
 - deutlich unterschiedliche Abstandsabhängigkeit
 - führt zu zwei unterschiedlichen Regimen
- Förster-Transfer
 - dominiert, wenn die Coulomb-Wechselwirkung erlaubt ist
 - typischerweise für r > 1 nm
- Dexter-Transfer
 - i.d.R. nur für kleine Abstände
 - oder wenn die Coulomb-Wechselwirkung nicht erlaubt ist
- Dominanz von Förster- bzw. Dexter-Transfer wird deutlich, wenn die Spinwellenfunktion explizit berücksichtigt wird.

Mit $\Psi = \Psi_{el} \Psi_{spin}$ und unter der Annahme, dass die Wechselwirkung spinunabhängig ist, gilt:

$$\begin{split} \boldsymbol{\beta}^{\mathrm{C}} &= \left\langle \Psi_{\mathrm{el},\mathrm{D}}(1)\Psi_{\mathrm{el},\mathrm{A}}^{*}(2) \middle| \hat{\mathcal{H}}' \middle| \Psi_{\mathrm{el},\mathrm{D}}^{*}(1)\Psi_{\mathrm{el},\mathrm{A}}(2) \right\rangle \\ &\cdot \left\langle \Psi_{\mathrm{spin},\mathrm{D}}(1) \middle| \Psi_{\mathrm{spin},\mathrm{D}}^{*}(1) \right\rangle \left\langle \Psi_{\mathrm{spin},\mathrm{A}}^{*}(2) \middle| \Psi_{\mathrm{spin},\mathrm{A}}(2) \right\rangle \end{split}$$

und

$$\begin{split} \beta^{\mathrm{E}} &= \left\langle \Psi_{\mathrm{el},\mathrm{D}}(1)\Psi_{\mathrm{el},\mathrm{A}}^{*}(2) \middle| \hat{\mathcal{H}}' \middle| \Psi_{\mathrm{el},\mathrm{D}}^{*}(2)\Psi_{\mathrm{el},\mathrm{A}}(1) \right\rangle \\ &\cdot \left\langle \Psi_{\mathrm{spin},\mathrm{D}}(1) |\Psi_{\mathrm{spin},\mathrm{A}}(1) \right\rangle \left\langle \Psi_{\mathrm{spin},\mathrm{A}}^{*}(2) |\Psi_{\mathrm{spin},\mathrm{D}}^{*}(2) \right\rangle. \end{split}$$

Entscheidend sind jeweils die Spinwellenfunktionen.

Förster- und Dexter-Resonanzenergietransfer Explizite Berücksichtigung der Spinwellenfunktion

- Coulombterm β^C
 - Spinwellenfunktionen auf demselben Molekül
 - einmal im Grund- und einmal im angeregten Zustand
 - Voraussetzung f
 ür F
 örster-Transfer: gleiche Spinmultiplizit
 ät
- Austauschterm β^E
 - Spinwellenfunktionen auf unterschiedlichen Molekülen
 - nur ungleich Null für Überlapp der Wellenfunktionen
 - Voraussetzung f
 ür Dexter-Transfer: Überlapp
- Faustregel: Förster-Transfer für Singulett-Zustände, Dexter-Transfer für Triplett-Zustände

virkungen

DRG

- In der organischen Elektronik spielen Wechselwirkungen einer großen Zahl von Molekülen eine wichtige Rolle.
- A Das einfachste Konzept f
 ür ein Exziton ist eine regelm
 ä
 ßige, lineare Anordnung identischer Molek
 üle.
- Q Die Wechselwirkung einer großen Zahl von Molekülen führt zu kontinuierlichen Energiebändern.
- Kopplungsstärke und Variation der Energien entscheiden über kohärenten oder inkohärenten Energietransfer.
- Abhängig vom Modus der Kopplung zwischen Molekülen dominiert Dexter- oder Förster-Energietransfer.