Organische Elektronik

Elektronische Prozesse in organischen Halbleitern

Angeregte Moleküle von der Gasphase zum amorphen Film

Albert-Ludwigs-Universität Freiburg

Dr. Till Biskup

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Sommersemester 2019

- Umgebung und Anordnung der Chromophore zueinander haben großen Einfluss auf den angeregten Zustand.
- Polarisation (elektrostatische Wechselwirkung der Dipole) tritt bereits in der Gasphase auf.
- Statistische Mittelung unterschiedlicher spektraler Verschiebungen führt zu inhomogener Linienverbreiterung.
- Die Dynamik der Umgebung führt zu Phononenankopplung im Festkörper und zu Solvatisierung in Lösung.
- Die elektronische Kopplung ist stark abstandsabhängig und führt zu Linienverschiebung und -aufspaltung.

- elektronische Struktur molekulare Photophysik
 - elektronische Zustände eines Moleküls
 - Übergänge zwischen molekularen Zuständen
- 2 Ladungen und angeregte Zustände
 - angeregte Moleküle von der Gasphase zum amorphen Film
 - angeregte Moleküle in kristallinen Phasen: Frenkel-Exziton
 - lacktriangle angeregte Zustände in π -konjugierten Polymeren
 - geladene Moleküle
- elektronische und optische Prozesse
 - Ladungsträgertransport
 - Dissoziation angeregter Zustände
 - Diffusion angeregter Zustände
 - Zerfall angeregter Zustände

- Fokus des vorherigen Teils
 - molekulare Photophysik
 - Wechselwirkung von Licht und Materie
 - Erzeugung angeregter Zustände
- Fokus dieses Teils
 - Einflüsse auf den angeregten Zustand
 - Einfluss der Umgebung auf den Chromophor
 - Anordnung der Chromophore zueinander

Chromophor

Der Teil eines Moleküls, der Licht absorbiert: (i) π -konjugierter Kern eines Moleküls ohne nichtkonjugierte Seitenketten; (ii) elektronisch kohärenter Teil einer π -konjugierten Polymerkette

Von der Gasphase zum amorphen Film

- hilft beim Verständnis von Kernkonzepten
- letztlich nur für wenige "Modellmoleküle" zeigbar
- die meisten organischen Halbleiter sind relativ schwer in Gasphase zu bekommen...

Vier Einflüsse werden nachfolgend näher behandelt:

- Polarisation
- statistische Mittelung
- Dynamik der Umgebung
- elektronische Kopplung zwischen Chromophoren

Übersicht

Polarisation

Statistische Mittelung und Zustandsdichte (DOS)

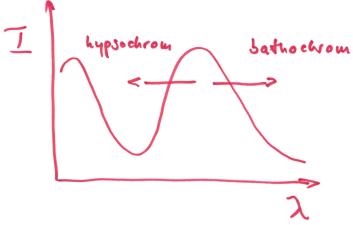
Dynamik der Umgebung

Elektronische Kopplung zwischen Chromophoren

Experiment

- organisches Molekül in der (kalten) Gasphase
- in einem Strom aus Edelgas
- geringer (aber zunehmender) Druck des Trägergases
- Messgröße: Fluoreszenzanregungsspektrum

Ergebnisse


- Spektrum des isolierten Moleküls bei geringem Druck
- zunehmende Rotverschiebung des Spektrums mit zunehmendem Druck

Ursache

- elektrostatische Wechselwirkung zwischen Dipolen (Van-der-Waals-Wechselwirkungen)
- beteiligt: der Dipol des angeregten Moleküls M* und von ihm induzierte Dipole der Gasmoleküle

- Molekül im Grundzustand: M
 - schwacher Dipol
 - ausschließlich Beiträge von fluktierenden Dipolen im Sinne der Van-der-Waals-Wechselwirkung
- Molekül im angeregten Zustand: M*
 - starker Dipol
- Polarisationseffekt
 - Dipol von M* induziert Dipole in Molekülen der Umgebung
 - elektrostatische WW zwischen den Dipolen der Moleküle
 - potentielle Energie des Chromophors wird um die Wechselwirkungsenergie der Dipolmomente verringert
 - elektrostatische Wechselwirkung stark im angeregten und schwach im Grundzustand
 - führt zu Rotverschiebung des elektronischen Übergangs

Gegeben seien zwei Dipole p_1 und p_2 im Abstand r zueinander in beliebiger Orientierung.

In der Punkt-Dipol-Näherung ist die Wechselwirkungsenergie V der beiden Dipole gegeben zu:

$$V = \frac{1}{4\pi\varepsilon_0} \frac{p_1 p_2 - 3(p_1 \hat{\pmb{r}})(p_2 \hat{\pmb{r}})}{r^3}$$

mit dem Einheitsvektor $\hat{r} = r/r$ entlang der Verbindungsachse der beiden Dipole und der Vakuumpermittivität ε_0 .

Punkt-Dipol-Näherung

Abstand r groß gegenüber der Ausdehnung der Dipole p_1 , p_2

Für den Spezialfall $p_1 \parallel p_2$ und $p_1, p_2 \parallel \boldsymbol{r}$ vereinfacht sich die Beziehung zu:

$$V = -\frac{1}{4\pi\varepsilon_0} \frac{2p_1p_2}{r^3} \,.$$

Sei p_1 das Dipolmoment des Chromophors (M1) und p_2 das von p_1 induzierte Dipolmoment im benachbarten Molekül (M2). Die Größe von p_2 ist dann gegeben als:

$$p_2 = \alpha E_1 \qquad \qquad E_1 = \frac{1}{4\pi\varepsilon_0} \frac{2p_1}{r^3}$$

mit der Polarisierbarkeit α von M2 und dem elektrischen Feld E_1 an M2, das durch p_1 von M1 erzeugt wird.

Effekte durch Polarisation

Grundlegende, qualitative Überlegungen

Durch Einsetzen ergibt sich:

$$V = \frac{1}{(4\pi\varepsilon_0)^2} \frac{4p_1^2\alpha}{r^6} \,.$$

Gilt nur für den stark vereinfachten Fall $(p_1 \parallel p_2)$, trotzdem hilfreich zur Ableitung allgemeiner Prinzipien:

- Die Energie der Wechselwirkung vergrößert sich mit der Polarisierbarkeit α des benachbarten Moleküls.
- ▶ Die Energie der Wechselwirkung hängt quadratisch vom Dipolmoment p₁ des Chromophors ab.
- Die Energie der Wechselwirkung hat eine starke Abstandsabhängigkeit proportional r⁻⁶.

Übersicht

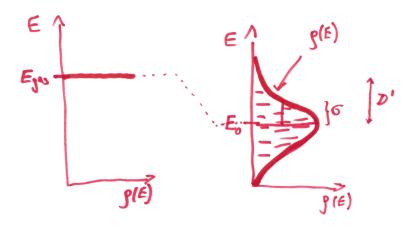
Polarisation

Statistische Mittelung und Zustandsdichte (DOS)

Dynamik der Umgebung

Elektronische Kopplung zwischen Chromophoren

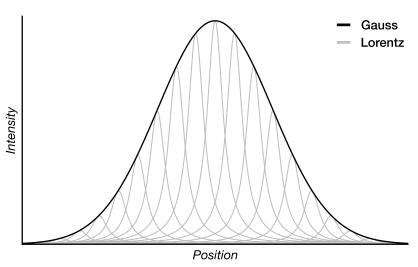
- Ursache für statistische Effekte
 - Überlagerung unterschiedlicher spektraler Verschiebungen
 - spektrale Verschiebungen polarisationsinduziert
- spektrale Verschiebung abhängig von
 - Umgebung
 - Abstand der Moleküle
 - Orientierung der Moleküle zueinander
- ungeordneter Festkörper (Glas, amorpher Film)
 - alle diese Parameter zufallsverteilt
 - Verteilung entspricht einer Normalverteilung
 - Gauß-Verteilung um einen Mittelwert


zwei grundlegend unterschiedliche Situationen

- hoch verdünnte Chromophore in verdünnter Gasphase
 - lacktriangle alle mit der gleichen Energie $E_{
 m gas}$ des angeregten Zustands
- Chromophore in unorientierter kondensierter Phase
 - Gaußsche Verteilung der Energien E
 - zentriert um Mittelwert E₀
 - weicht um einen mittleren, durch Polarisation induzierten Betrag D' von Egas ab

Zustandsdichte (density of states, DOS)

- isolierte Chromophore: Delta- bzw. Lorentz-Funktion
- ► Chromophore in ungeordneter, kondensierter Phase: Gauß-Funktion (g(E))



Einfluss statistischer Effekte

Übergang von Lorentz- zu Gauß-Funktion

Zustandsdichte in ungeordneter, kondensierter Phase

$$\rho(E) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(E - E_0)^2}{2\sigma^2}\right)$$

- \triangleright Parameter σ
 - "Unordnungsparameter" (disorder parameter)
 - mathematisch: Standardabweichung
 - unterscheidet sich für die unterschiedlichen Zustände
- Einfluss der Polarisation auf σ
 - S_0 hängt weniger von Polarisation ab als S_1 , σ kleiner
 - experimentell: σ skaliert ungefähr mit D'

Übersicht

Polarisation

Statistische Mittelung und Zustandsdichte (DOS)

Dynamik der Umgebung

Elektronische Kopplung zwischen Chromophoren

- Festkörper
 - inhomogen verbreiterte Spektren
 - jedes Molekül mit leicht anderer lokaler Umgebung
 - Anbindung an Schwingungen (Phononen, Vibronen)
- flüssige Lösung
 - Umgebung kann sich reorientieren
 - Solvatisierung
 - Resultat: Stokes-Verschiebung
- beide Effekte experimentell zugänglich
 - Festkörper: schmalbandige Anregung bei tiefer Temperatur
 - Lösung: "klassische" Fluoreszenzspektroskopie (z.B. alter PCG-Versuch)

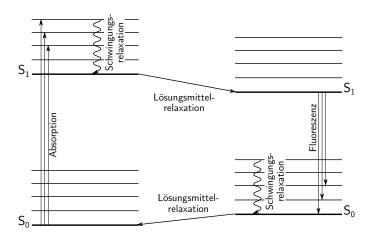
Schmalbandige Anregung bei tiefer Temperatur (<10 K)

- Voraussetzungen
 - hochgradig verdünnt
 - kein Energietransfer zwischen Chromophoren
- Anregung von Sub-Ensembles
 - entsprechend homogene Umgebung
 - resonant mit dem eingestrahlten Licht
- Linienbreite wird von drei Faktoren bestimmt
 - Anregungsbandbreite
 - Bandbreite des Monochromators
 - homogene Linienverbreiterung (Lebenszeit)

- Ergebnis
 - Spektrum sieht aus wie das aus der Gasphase
 - aber: zwei charakteristische Änderungen
- charakteristische Änderungen
 - bathochrome Verschiebung
 - nichtresonante Schulter an jeder vibronischen Linie (Phononenflügel, phonon wing)
- Phononenflügel
 - durch Ankopplung an Phononenmoden des Mediums
 - analog zu intramolekularen Schwingungsmoden
 - in inhomogen verbreiterten Spektren nicht auflösbar
 - Charakteristikum amorpher Festkörper

Fluoreszenz-Spektroskopie in flüssiger Lösung

- Auftreten weiterer dynamischer Effekte
 - Umgebung des Chromophors kann sich (re)orientieren
 - Kernidee hinter dem Solvatisierungsprozess


Solvatisierung (Lösungsmittelrelaxation)

- vollständig analog zur Schwingungsrelaxation
 - nur etwas längere Zeitskala
- Unterschied
 - Umgebung ändert ihre Geometrie, nicht der Chromophor
- Resultat
 - Energiedifferenz zwischen den 0–0-Übergängen von Absorption und Emission (Stokes-Verschiebung)

Dynamik der Umgebung

Flüssige Lösung: Stokes-Verschiebung durch Solvatisierung

Dynamik der Umgebung

Flüssige Lösung: Stokes-Verschiebung durch Solvatisierung

 Stokes-Verschiebung aufgrund der Solvatisierung abhängig von der Polarität des Lösungsmittels

Übersicht

Polarisation

Statistische Mittelung und Zustandsdichte (DOS)

Dynamik der Umgebung

Elektronische Kopplung zwischen Chromophoren

Elektronische Kopplung zwischen Chromophoren

- intermolekulare Wechselwirkung in einem ungeordneten unverdünnten Film
 - immer Van-der-Waals-Wechselwirkungen
 - reduziert die Energie der kondensierten Phase gegenüber der Gasphase durch die Polarisationsenergie
 - Grund, warum kondensierte Phasen stabil sind und nicht spontan verdunsten
- nachfolgend behandelte Aspekte
 - elektronische Wechselwirkung im Grundzustand
 - elektronische Wechselwirkung im angeregten Zustand
 - Oszillatorstärke von Dimer- und Exzimerübergängen

Elektronische Wechselwirkung im Grundzustand

- Ausgangspunkt
 - zwei benachbarte Moleküle im Film
 - individuelle Grundzustandsenergien E₁ und E₂
 - lacktriangle zugehörige (Viel-Elektronen-)Wellenfunktionen Ψ_1 und Ψ_2
- Annahmen
 - Schwingungs- und Spin-Wellenfunktion werden der Einfachheit halber vernachlässigt
 - intermolekularer Elektronenüberlapp ist klein
 - molekulare Einheiten bewahren ihre Individualität
- Resultat
 - Zwei-Teilchen-System
 - zugehöriger Hamilton-Operator $\hat{\mathcal{H}}$

Der Hamilton-Operator eines Zwei-Teilchen-Systems kann geschrieben werden als:

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_1 + \hat{\mathcal{H}}_2 + V_{12}$$

mit dem intermolekularen Störpotential V_{12} (Coulomb-Potential, durch Punkt-Dipol-Näherung beschreibbar).

Wiederholung: V ist in der Punkt-Dipol-Näherung gegeben zu:

$$V = \frac{1}{4\pi\varepsilon_0} \frac{p_1 p_2 - 3(p_1 \hat{\boldsymbol{r}})(p_2 \hat{\boldsymbol{r}})}{r^3}$$

mit dem Einheitsvektor $\hat{r} = r/r$ entlang der Verbindungsachse der beiden Dipole.

$$\Psi_g = \Psi_1 \Psi_2$$
.

Daraus ergibt sich die Grundzustandsenergie des Systems durch Lösen der Schrödinger-Gleichung zu:

$$E_{\rm g} = \langle \Psi_1 \Psi_2 | \hat{\mathcal{H}}_1 + \hat{\mathcal{H}}_2 + V_{12} | \Psi_1 \Psi_2 \rangle = E_1 + E_2 + D$$

mit der Polarisationsenergie

$$D = \langle \Psi_1 \Psi_2 | V_{12} | \Psi_1 \Psi_2 \rangle.$$

Anmerkungen zum Beitrag D zur Gesamtenergie

- immer negativ
- Van-der-Waals-WW-Energie (Polarisationsenergie)
- verringert die Grundzustandsenergie des Systems zweier Moleküle im Vergleich zur Grundzustandsenergie der beiden individuellen Moleküle
- stellt sicher, dass ein Ensemble von Molekülen kondensiert
- hervorgerufen durch Nullpunktsoszillationen der Moleküle, die Dipole in der Umgebung induzieren
- abhängig vom intermolekularen Abstand und der Orientierung der Moleküle zueinander

Was passiert, wenn eines der Moleküle angeregt wird?

Annahme:

- beide Moleküle identisch
- egal, welches Molekül angeregt wird: $\Psi_1^*\Psi_2 = \Psi_1\Psi_2^*$
- Anregung kann zwischen den beiden Molekülen oszillieren

Wellenfunktion Ψ_E des Gesamtsystems im angeregten Zustand ist eine Linearkombination beider Situationen:

$$\Psi_{\rm E} = c_1 \Psi_1^* \Psi_2 + c_2 \Psi_1 \Psi_2^*$$

Identische Moleküle: $c_1 = c_2$, Renormierung: $|c_1| = |c_2| = 1/\sqrt{2}$.

$$\Psi_{E\pm} = \frac{1}{\sqrt{2}} (\Psi_1^* \Psi_2 \pm \Psi_1 \Psi_2^*) \,.$$

Das entspricht der Situation der zwei Normalmoden zweier gekoppelter mechanischer Pendel.

Einsetzen in die Schrödinger-Gleichung mit dem Hamilton-Operator

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_1 + \hat{\mathcal{H}}_2 + V_{12}$$

liefert die Energiewerte E_{E+} , E_{E-} des angeregten Zustandes.

Energieeigenwerte des angeregten Zustands:

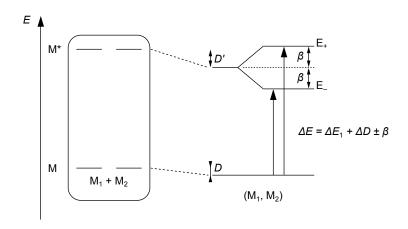
$$\begin{split} E_{\text{E+}} &= \frac{1}{2} \langle \Psi_1^* \Psi_2 + \Psi_1 \Psi_2^* | \hat{\mathcal{H}}_1 + \hat{\mathcal{H}}_2 + V_{12} | \Psi_1^* \Psi_2 + \Psi_1 \Psi_2^* \rangle \\ &= E_1^* + E_2 + \langle \Psi_1^* \Psi_2 | V_{12} | \Psi_1^* \Psi_2 \rangle + \langle \Psi_1^* \Psi_2 | V_{12} | \Psi_1 \Psi_2^* \rangle \\ &= E_1^* + E_2 + D' + \beta \end{split}$$

und

$$\begin{split} E_{\mathrm{E-}} &= \frac{1}{2} \langle \Psi_{1}^{*} \Psi_{2} - \Psi_{1} \Psi_{2}^{*} | \hat{\mathcal{H}}_{1} + \hat{\mathcal{H}}_{2} + V_{12} | \Psi_{1}^{*} \Psi_{2} - \Psi_{1} \Psi_{2}^{*} \rangle \\ &= E_{1}^{*} + E_{2} + \langle \Psi_{1}^{*} \Psi_{2} | V_{12} | \Psi_{1}^{*} \Psi_{2} \rangle - \langle \Psi_{1}^{*} \Psi_{2} | V_{12} | \Psi_{1} \Psi_{2}^{*} \rangle \\ &= E_{1}^{*} + E_{2} + D' - \beta \end{split}$$

Energie des isolierten M1 im angeregten Zustand

 E_2


Energie des isolierten M2 im Grundzustand

D'

- analog zu D
- Polarisationsenergie zwischen M1 und M2
- Coulombenergie der Wechselwirkung der Ladungsverteilung in M1 mit der in M2
- für nicht polare Moleküle gilt: |D'| > |D| und D, D' < 0

- Energie der Resonanzwechselwirkung
- lacktriangle bestimmt die Aufspaltung zwischen $E_{\mathrm{E+}}$ und $E_{\mathrm{E-}}$
- Wechselwirkung der überlappenden Ladungsdichte mit M1 und M2
- abhängig von Abstand und Orientierung von M1 und M2
- β und D' sind unterschiedlich empfindlich auf Abstand und Orientierung von M1 und M2.
 - substantieller Beitrag von D' möglich für $\beta \approx 0$

Experimentell: Energiedifferenz zwischen Zuständen

$$\Delta E_{\text{total}} = (E_1^* + E_2 + D' \pm \beta) - (E_1 + E_2 + D) = \Delta E_1 + \Delta D \pm \beta$$

- Anregungsenergie für M1, verschoben um die (negative)
 Differenz-Polarisationsenergie und die Resonanzenergie
- ightharpoonup empfindlich abhängig vom Überlapp der Wellenfunktion
 - sehr empfindlich für den intermolekularen Abstand

Interpretation? Fallunterscheidung:

- keine merkliche Wechselwirkung
- Dimer-Bildung
- Exzimer-Bildung

- intermolekulare Distanz groß
 - Resonanz-Wechselwirkung vernachlässigbar klein, $\beta \approx 0$
- amorpher Film
 - mittlere Aufspaltung klein gegenüber inhomogener Verbreiterung ($\beta \ll \sigma(\Delta D)$), kann nicht aufgelöst werden
- zwei Möglichkeiten der Realisierung
 - Einführung großer Seitenketten (sterische Hinderung)
 - Lösungsmittel mit niedrigem Siedepunkt (bewahren die strukturelle Unordnung bei der Filmbildung)
- Übergangsenergie entspricht der isolierter Moleküle
 - $\Delta E_{\text{total}} \approx \Delta E_1 + \Delta D$

(physikalisches) Dimer

Zwei schwach wechselwirkende identische Moleküle. die Wechselwirkung hat keinen Einfluss auf Abstand und Orientierung der Moleküle.

- zwei um 2β aufgespaltene Energieniveaus
- Übergangsenergien: $\Delta E_{\text{total}} = \Delta E_1 + \Delta D \pm \beta$
- Ergebnis
 - strahlende Übergänge zwischen Zuständen
 - abhängig von der Oszillatorstärke der Übergänge
 - Schwingungsstruktur möglich

Exzimer

Zwei stark wechselwirkende identische Moleküle, die Wechselwirkung führt zu Änderungen in Abstand und Orientierung der Moleküle.

- ► Energieniveaus und Übergangsenergien
 - formal identisch wie beim Dimer
 - Wert für β deutlich größer als beim Dimer
- Emission zeigt keine Schwingungsstruktur
- Absorption identisch mit der des Dimers
 - Exzimer kann nur in Emission beobachtet werden
 - Name: Exzimer = angeregtes Dimer (excited dimer)

Elektronische Kopplung von Molekülen

Oszillatorstärke von Dimer- und Exzimerübergängen

Für nicht wechselwirkende Moleküle M1 und M2 sind die zugehörigen Übergangsdipolmomente μ_1 und μ_2 gegeben zu:

$$\mu_1 = \langle \psi_1 | e \boldsymbol{r} | \psi_1^* \rangle$$
 und $\mu_2 = \langle \psi_2 | e \boldsymbol{r} | \psi_2^* \rangle$.

Entsprechend ergibt sich für das Übergangsdipolmoment μ_\pm der beiden Zustände der gekoppelten Moleküle:

$$\begin{split} \boldsymbol{\mu}_{\pm} &= \langle \Psi_{\mathrm{G}} | e \boldsymbol{r} | \Psi_{\mathrm{E}\pm} \rangle \\ &= \frac{1}{\sqrt{2}} \langle \Psi_{1} \Psi_{2} | e \boldsymbol{r} | (\Psi_{1}^{*} \Psi_{2} \pm \Psi_{1} \Psi_{2}^{*}) \rangle \\ &= \frac{1}{\sqrt{2}} \langle \Psi_{1} \Psi_{2} | e \boldsymbol{r} | \Psi_{1}^{*} \Psi_{2} \rangle \pm \langle \Psi_{1} \Psi_{2} | e \boldsymbol{r} | \Psi_{1} \Psi_{2}^{*} \rangle \\ &= \frac{1}{\sqrt{2}} (\boldsymbol{\mu}_{1} \pm \boldsymbol{\mu}_{2}) \,. \end{split}$$

Oszillatorstärke von Dimer- und Exzimerübergängen ist

- abhängig von der Vektorsumme der individuellen Übergangsdipolmomente
- abhängig von der relativen Orientierung der Moleküle zueinander

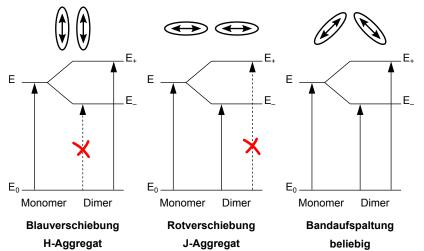
Drei Fälle unterscheidbar

- H-Aggregate
- J-Aggregate
- beliebige Orientierung

- Moleküle koplanar gestapelt
- ► E_: Übergangsdipolmomente antiparallel, Gesamtmoment verschwindet
- E₊: Übergangsdipolmomente parallel, Gesamtmoment 2μ
- ▶ Absorption nur in E₊ möglich
- Absorption hypsochrom verschoben i. Vgl. zum Monomer
- ▶ Anregung in E₊ gefolgt von Relaxation in E_−
- ▶ keine Oszillatorstärke von *E*_− in den Grundzustand
- Energie kann nur nichtstrahlend abgegeben werden

J-Aggregate

- Moleküle sequentiell kollinear und parallel
- E_{-} : Übergangsdipolmomente parallel, Gesamtmoment 2μ
- E_{+} : Übergangsdipolmomente antiparallel, Gesamtmoment verschwindet
- strahlende Übergänge von und nach E_{-} erlaubt
- Absorption bathochrom verschoben i. Vgl. zum Monomer
- schnelle und intensive Fluoreszenz



- häufiger Fall
- Übergangsdipolmomente mit variablem Winkel
- Absorptionsspektrum aufgeteilt in Dublett
- Verhältnis der Intensitäten der Komponenten ergibt sich aus der Vektorsumme der Monomer-Momente
- Fluoreszenz aus dem tieferliegenden Zustand
- Fluoreszenzlebensdauer normalerweise ein bis zwei Größenordnungen länger als für das Monomer

Elektronische Kopplung von Molekülen

Illustration der drei Fälle

- Umgebung und Anordnung der Chromophore zueinander haben großen Einfluss auf den angeregten Zustand.
- Polarisation (elektrostatische Wechselwirkung der Dipole) tritt bereits in der Gasphase auf.
- Statistische Mittelung unterschiedlicher spektraler Verschiebungen führt zu inhomogener Linienverbreiterung.
- Die Dynamik der Umgebung führt zu Phononenankopplung im Festkörper und zu Solvatisierung in Lösung.
- Die elektronische Kopplung ist stark abstandsabhängig und führt zu Linienverschiebung und -aufspaltung.