Organische Elektronik

Elektronische Prozesse in organischen Halbleitern

3. Übergänge zwischen molekularen Zuständen (I): Klassisches Bild und makroskopische Größen

Albert-Ludwigs-Universität Freiburg

Dr. Till Biskup

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Sommersemester 2019

- Photophysikalische Prozesse: Ergebnis der Anregung durch nichtionisierende elektromagnetische Strahlung
- Wechselwirkung zwischen Licht und Materie lässt sich klassisch durch den Lorentz-Oszillator beschreiben.
- Die Einstein-Koeffizienten verknüpfen Quantenmechanik und experimentell zugängliche Größen.
- Bei Raumtemperatur ist nur das niedrigste Schwingungsniveau eines Moleküls besetzt.
- Schwingungsbanden sind in komplexen organischen Molekülen wegen Überlagerung selten aufgelöst.

Übersicht

Photophysikalische Prozesse: Überblick

Wechselwirkung von Licht und Materie

Energie eines Moleküls

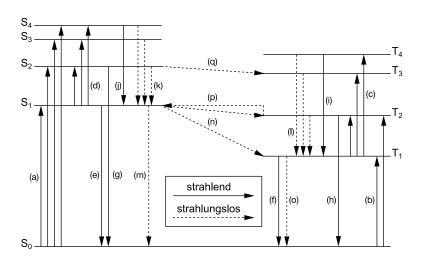
Schwingungen eines Moleküls

Photophysikalische Prozesse Definition

photophysikalischer Prozess

Physikalischer Prozess (d.h. ohne chemische Änderung) als Ergebnis der elektronischen Anregung eines Moleküls oder Molekülsystems durch nichtionisierende elektromagnetische Strahlung (Photonen).

- Wechselwirkung mit elektromagnetischer Strahlung
- strahlende und strahlungslose Prozesse
- Ladungstransfer gehört nicht dazu.



- unimolekulare Prozesse
 - strahlende Anregung (Absorption)
 - strahlende Abregung (Emission, Lumineszenz)
 - nichtstrahlende Übergänge
- Multiphotonen-Prozesse
 - Absorption (mindestens) zweier Photonen
 - Photonen können unterschiedliche Energie haben
 - Absorption gleichzeitig oder nacheinander
- bimolekulare Prozesse
 - Störungen
 - Anregungstransfer
 - Komplexbildung
 - Wechselwirkung zwischen angeregten Molekülen

Übersicht

Photophysikalische Prozesse: Überblick

Wechselwirkung von Licht und Materie

Energie eines Moleküls

Schwingungen eines Moleküls

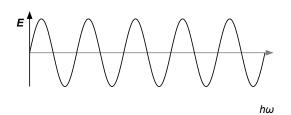
Lorentz-Oszillator

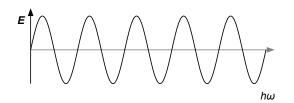
Beschreibung eines an einen Atomrumpf gebundenen Elektrons, das durch ein elektrisches Feld zu harmonischen Oszillationen angeregt wird.

- erzwungene, gedämpfte Oszillation
- elektromagnetisches Wechselfeld beschleunigt die Elektronenverteilung im Molekül
- Energietransfer maximal, wenn die Frequenz der elektromagnetischen Strahlung gleich der Resonanzfrequenz ω_0 der Elektronenverteilung ist

Klassisches Bild: Lorentz-Oszillator

Elektron an Atomrumpf gebunden





Lorentz-Oszillator: mathematische Formulierung

Einzelnes Elektron mit Masse $m_{\rm e}$ und Ladung e, elastisch mit der Federkonstante k an einen Atomrumpf gebunden, mit Resonanzfrequenz ω_0 mit

$$\omega_0^2 = \frac{k}{m_e}$$

Kraft $F_{\rm EM}$ des elektromagnetischen Feldes auf das Elektron:

$$F_{\rm EM} = eE + ev \times B$$

mit Geschwindigkeit v des Elektrons, elektrischem Feld E und magnetischem Feld B.

Wechselwirkung mit B vernachlässigbar, entsprechend:

$$E(t) = E_0 \exp(-i\omega t)$$
 $F_{EM} \approx eE_0 \exp(-i\omega t)$

Im ungedämpften Fall ($t > \gamma^{-1}$, mit Dämpfungskonstante γ) gilt:

$$x(t) = x_0 \exp(-i\omega t)$$

mit der Amplitude

$$x_0 = \frac{eE_0}{m_e} \frac{1}{(\omega_0^2 - \omega^2) - i\omega\gamma} .$$

Klassisches Bild: Lorentz-Oszillator

Elektron an Atomrumpf gebunden

Oszillierende Ladungsverteilung erzeugt einen Dipol μ

$$\mu = ex_0 = \alpha E_0$$

mit der Polarisierbarkeit α .

Die Polarisierbarkeit α ist definiert als Dipolmoment μ pro Feldstärke E_0 , die in einem Atom oder Molekül induziert werden kann

$$\alpha = \frac{\mu}{E_0}$$

und ist ein Maß dafür, wie leicht ein elektrisches Feld die Elektronenverteilung eines Moleküls beeinflussen kann. Die Intensität I des austretenden Strahls ist dann:

$$I = I_i \exp(-\sigma n' d) = I_i \exp(-\alpha' d)$$

Dabei sind

 σ molekularer Absorptionsquerschnitt (in cm²)

 α' Absorptionskoeffizient (in cm⁻¹)

 gilt allgemein für die Ausbreitung elektromagnetischer Strahlung in dämpfenden Stoffen

$$I = I_i 10^{-\varepsilon[\mathrm{M}]d}$$

mit der molaren Konzentration [M] der absorbierenden Spezies. Mit

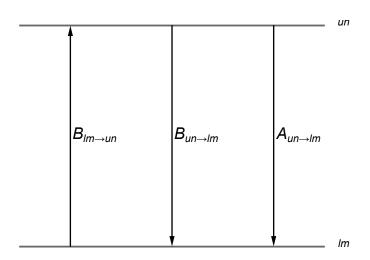
$$n' = N_{\mathbf{A}}[\mathbf{M}] \cdot 10^{-3}$$

wobei $N_{\rm A} = 6.02 \cdot 10^{23}$ die Avogadrosche Zahl ist, ergibt sich

$$\sigma = \frac{2303\varepsilon}{N_{\Delta}} = 3.81 \cdot 10^{-19}\varepsilon \qquad \text{(in cm}^2\text{)}$$

Einstein-Koeffizienten

Schematische Darstellung



Einstein-Koeffizienten

Herleitung aus der Planckschen Strahlungsformel

Plancksche Strahlungsformel: Strahlungsdichte $\rho(\nu)$ der Frequenz ν eines schwarzen Körpers mit Temperatur T:

$$\rho(\nu) = \frac{8\pi h \nu^3}{c^3} \frac{1}{\exp\left(\frac{h\nu}{k_{\rm B}T}\right) - 1}$$

mit Planckschem Wirkungsquantum h, Lichtgeschwindigkeit c und Boltzmann-Konstante $k_{\rm B}$.

Übergangsrate von Zustand lm in Zustand un

$$\Delta N_{lm\to un} = N_{lm} B_{lm\to un} \rho(\nu_{lm\to un})$$

mit Zahl N_{lm} der Moleküle in Zustand lm, Übergangsfrequenz $\nu_{lm\to un}$ und Übergangswahrscheinlichkeit $B_{lm\to un}$.

Übergang vom Zustand un nach lm über spontane oder stimulierte Emission:

$$\Delta N_{un\to lm} = N_{un} \left[A_{un\to lm} + B_{un\to lm} \rho(\nu_{un\to lm}) \right]$$

mit

$$B_{un \to lm} = B_{lm \to un}$$
 und $v_{un \to lm} = v_{lm \to un}$

und Zahl N_{un} der Moleküle in Zustand un.

Gleichgewicht: gleiche Rate absorptiver und emissiver Übergänge:

$$\frac{A_{un\to lm}}{B_{un\to lm}} = \left(\frac{N_{lm}}{N_{un}} - 1\right) \rho(\nu_{un\to lm})$$

Boltzmann-Verteilung: Verhältnis der Besetzungszahlen zweier Zustände im thermischen Gleichgewicht:

$$\frac{N_{un}}{N_{lm}} = \exp\left(-\frac{h\nu_{lm\to un}}{k_{\rm B}T}\right)$$

Entsprechend gilt für das Verhältnis der Koeffizienten *A* und *B* (Einstein-Relation):

$$A_{un\to lm} = 8\pi \left(\frac{h\nu_{un\to lm}n}{c}\right)^3 B_{un\to lm}$$

mit dem Brechungsindex n.

Die Einstein-Koeffizienten lassen sich direkt mit experimentell zugänglichen Größen in Beziehung setzen.

Mit dem Übergang vom Zustand lm nach un

$$\Delta N_{lm\to un} = N_{lm} B_{lm\to un} \rho(\nu_{lm\to un})$$

ergibt sich

$$B_{l0\to un} = \frac{c}{hn} \int \frac{\sigma(\nu) d\nu}{\nu} = \frac{2303}{N_A} \frac{c}{hn} \int \frac{\varepsilon(\nu) d\nu}{\nu}$$

B-Koeffizient direkt aus Absorptionsspektrum zugänglich

Für spiegelbildliche Absorption und Emission gilt:

$$A_{u0\rightarrow lm}=8\pi\left(\frac{h\nu n}{c}\right)^3B_{l0\rightarrow un}$$

und nach Stickler und Berg für die Emissionsrate k_r

$$\begin{split} k_r &= \tau_0^{-1} = A_{u0 \to l} = \sum_m A_{u0 \to lm} \\ &= 8\pi h \left(\frac{n}{c}\right)^3 \sum_m v_{u0 \to lm}^3 B_{u0 \to lm} \end{split}$$

A-Koeffizient hängt mit Emissionsrate zusammen

Intensität eines optischen Übergangs: Oszillatorstärke f

$$f = \frac{m_{\rm e}c}{\pi e^2 n} \int \sigma(\nu) d\nu = \frac{2303}{N_{\rm A}} \frac{m_{\rm e}c^2}{\pi e n} \int \varepsilon(\tilde{\nu}) d\tilde{\nu}$$

Näherung für gemittelte Frequenz $\langle \nu \rangle$

$$B_{l0\to un} = \frac{c}{hn} \int \frac{\sigma(\nu)}{\nu} d\nu \approx \frac{c}{hn} \frac{1}{\nu} \int \sigma(\nu) d\nu$$

und Einsetzen ergibt

$$f = \frac{m_{\rm e}h\langle\nu\rangle}{\pi e^2} B_{l0\to un}$$

B-Koeffizient hängt mit Oszillatorstärke zusammen

Abschätzen des maximalen Extinktionskoeffizienten ε_{max} :

$$\int \varepsilon(\tilde{\nu}) d\tilde{\nu} \approx \varepsilon_{\text{max}} \Delta \tilde{\nu}$$

mit der Halbwertsbreite $\Delta \tilde{\nu}$ der Absorptionsbande

Mit
$$f = 1$$
, $n = 1$, $\Delta \tilde{v} = 2000 \text{ cm}^{-1}$

$$f = \frac{4.39 \cdot 10^{-9}}{n} \int \varepsilon(\tilde{v}) d\tilde{v} \qquad \varepsilon_{\text{max}} \approx 10^5 \text{ cm}^{-1}$$

Mit n = 1, $\tilde{v} = 25000 \text{ cm}^{-1}$ (400 nm)

$$k_r = \frac{1}{\tau_0} \approx n^3 \tilde{v}^2 f$$
 $k_r \approx 10^9 \text{ s}^{-1}$

Übersicht

Photophysikalische Prozesse: Überblick

Wechselwirkung von Licht und Materie

Energie eines Moleküls

Schwingungen eines Moleküls

Gesamtenergie E_{tot} eines Moleküls

$$E_{\text{tot}} = E_{\text{el}} + E_{\text{vib}} + E_{\text{rot}}$$

und entsprechend für ein angeregtes Molekül M^* und somit

$$\Delta E_x = E_x^* - E_x$$
 $x = \{\text{tot, el, vib, rot}\}$

Typische Werte (20 000 cm⁻¹ $\widehat{=}$ 500 nm $\widehat{=}$ 2.5 eV)

$\Delta E_{ m el}$	$\Delta E_{ m vib}$	$\Delta E_{ m rot}$	$k_{\rm B}T$
20 000 cm ⁻¹	1000 cm ⁻¹	10 cm ⁻¹	200 cm ⁻¹

Boltzmann-Verteilung: Anteil f_m der Moleküle im Zustand m im thermischen Gleichgewicht:

$$f_m = \exp\left(-\frac{m\Delta E}{k_{\rm B}T}\right)$$

Raumtemperatur: $k_BT \approx 200 \text{ cm}^{-1}$

Schwingungszustände: $\Delta E \approx 1000 \text{ cm}^{-1}$

$$f_1 \approx \exp(-5) = 6.7 \cdot 10^{-3}$$

 $f_2 \approx \exp(-10) = 4.5 \cdot 10^{-5}$

> 0.99 aller Moleküle im Schwingungsgrundzustand

Allgemein gilt für die Energie:

$$E = h\nu = \frac{hc}{\lambda} = hc\tilde{\nu}$$

mit Planckschen Wirkungsquantum h, Frequenz v, Wellenlänge λ und Wellenzahl \tilde{v} :

$$\tilde{v} = \frac{1}{\lambda} = \frac{E}{hc}$$
 $[\tilde{v}] = \text{cm}^{-1}$

Umrechnung von Elektronenvolt (eV) in Wellenlänge (nm):

$$E(eV) = \frac{1239}{\lambda(nm)}$$

- Rotationsniveaus
 - ΔE im Mikrowellenbereich
 - bei Raumtemperatur viele Niveaus besetzt
 - meist nicht auflösbar
 - in kondensierter Phase durch Schwingungen maskiert
- Schwingungsniveaus
 - ∆E im IR-Bereich
 - bei Raumtemperatur nur unterstes Niveau besetzt
 - werden bei optischen Übergängen mit angeregt (vibronische Zustände)
 - in komplexeren Molekülen meist nicht aufgelöst
- elektronische Niveaus
 - ΔE im UV/vis-Bereich
 - bei Raumtemperatur nur unterstes Niveau besetzt

Übersicht

Photophysikalische Prozesse: Überblick

Wechselwirkung von Licht und Materie

Energie eines Moleküls

Schwingungen eines Moleküls

- Bisherige vereinfachte Annahme: Kerne statisch
- Realität: Kerne schwingen um ihre Ruhelage
 - Frequenz ω
 - Schwingungsenergie $E_{\text{vib}} = \left(n + \frac{1}{2}\right)\hbar\omega$

Born-Oppenheimer-Näherung

Die unterschiedliche Masse von Kern und Elektron ($\Delta m \approx 10^3$) erlaubt die Separation der Wellenfunktionen.

Gesamtenergie E_{tot} und Gesamtwellenfunktion Ψ_{tot}

$$E_{\text{tot}} = E_{\text{el}} + E_{\text{vib}}$$
 $\Psi_{\text{tot}} = \Psi_{\text{el}} \Psi_{\text{vib}}$

Harmonischer Oszillator

schwingungsfähiges System, das sich durch eine lineare Rückstellgröße auszeichnet

Charakteristika

- schwingt sinusförmig um seine Ruhelage
- Schwingungsdauer unabhängig von der Auslenkung
- zwei Parameter: Eigenfreguenz und Dämpfung
- einfaches Modell mit analytischen Lösungen
- für realistische Systeme zu einfach

Anharmonischer Oszillator

schwingungsfähiges System, bei dem die Rückstellkraft nicht proportional zur Auslenkung aus der Ruhelage ist

empirische Gründe für ein anharmonisches Potential

- Kern-Kern-Wechselwirkungen
 - Potential wird für kleine Kernabstände steiler
- Dissoziation
 - Potentialwände sind nicht beliebig hoch
- unterschiedliche Potentiale als Näherungen der Realität

Anharmonischer Oszillator

Vergleich unterschiedlicher Potentiale

harmonisches Potential:

$$V(x) = \frac{1}{2}k(x - x_0)^2$$

Morse-Potential:

$$V(x) = D(1 - \exp(-\alpha(x - x_0)))^2$$

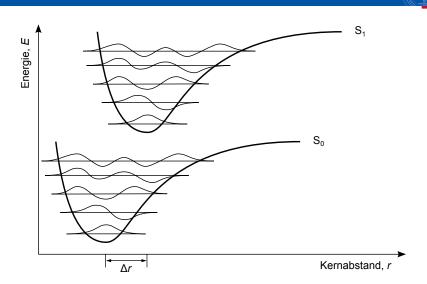
Lennard-Jones-(12,6)-Potential:

$$V(x) = \left[\left(\frac{x_0}{x} \right)^{12} - \left(\frac{x_0}{x} \right)^6 \right]$$

 x_0 ist jeweils der tiefste Punkt (Ruhelage) des Potentials

Potentialenergiekurven eines Moleküls

Ein einfaches Schema



- einfachstes Bild: zweiatomiges Molekül
 - Abszisse ist der Kernabstand
 - größerer Abstand für angeregten Zustand intuitiv: mehr antibindend
- Übergang zu mehratomigen Molekülen
 - Abszisse ist Normalkoordinate
 - pro Normalschwingung ein Potential
 - Spektrum ist Superposition aller Normalschwingungen
- Auftragung f
 ür reale Molek
 üle nicht sinnvoll m
 öglich
- Schema trotzdem enorm nützlich zum grundsätzlichen Verständnis strahlender und strahlungsloser Übergänge

Normalschwingungen (Normalmoden)

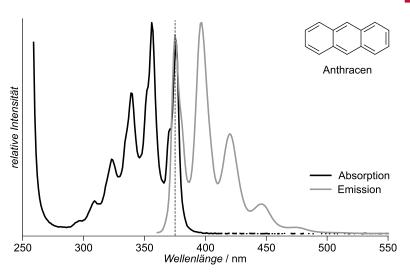
voneinander linear unabhängige Schwingungszustände eines oszillierenden Systems

nichtlineares Molekül mit N Atomen:

- 3N Freiheitsgrade
- davon Normalschwingungen: 3N-6(bzw. 3N-5 für lineare Moleküle)
- Für jedes "reale" Molekül sehr viele Schwingungen
- Banden in kondensierter Phase selten aufgelöst

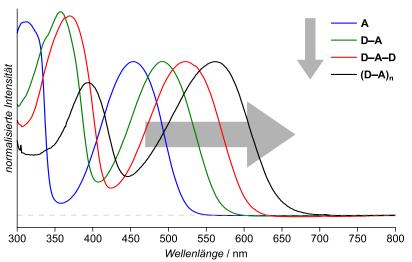
Optische Spektren

Seltener Fall: sichtbare Schwingungsbanden



Optische Spektren

Normalfall: nicht aufgelöste Schwingungsbanden



Matt et al., Macromolecules 51:4341-4349, 2018

- Photophysikalische Prozesse: Ergebnis der Anregung durch nichtionisierende elektromagnetische Strahlung
- Wechselwirkung zwischen Licht und Materie lässt sich klassisch durch den Lorentz-Oszillator beschreiben.
- Die Einstein-Koeffizienten verknüpfen Quantenmechanik und experimentell zugängliche Größen.
- Bei Raumtemperatur ist nur das niedrigste Schwingungsniveau eines Moleküls besetzt.
- Schwingungsbanden sind in komplexen organischen Molekülen wegen Überlagerung selten aufgelöst.