Organische Elektronik

Elektronische Prozesse in organischen Halbleitern

1. Einführung: organische Halbleiter

Albert-Ludwigs-Universität Freiburg

Dr. Till Biskup

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Sommersemester 2019

- Organische Elektronik umfasst mehrere Themengebiete: Festkörperphysik, org. Chemie, Photophysik/-chemie.
- Vorteile organischer gegenüber anorganischen Halbleitern: billig, leicht, flexibel, (fast) endlos anpassbar
- Organische Festkörper werden vom einzelnen Molekül und dessen Eigenschaften dominiert.
- Organische Halbleiter unterscheiden sich in wesentlichen Eigenschaften von ihren anorganischen Pendants.
- Nur ein Verständnis auf molekularer Ebene hilft bei der Entwicklung effizienter organischer Halbleiter.

Motivation: Warum organische Halbleiter?

Vergleich anorganischer und organischer Festkörper

Vergleich anorganischer und organischer Halbleiter

Organische Halbleiter – Spielzeug oder Realität?

Fortschritt der Technik in den letzten Jahren

Bild: Copyright @ 2009-2019 LG Electronics. All Rights Reserved

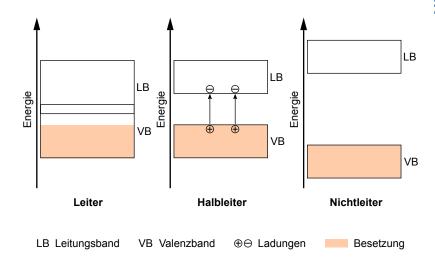
Organische Halbleiter – Spielzeug oder Realität?

Ein (unbewusster) realer Anwendungsfall – seit Jahrzehnten

66 ...few users will recognize that once they push the print button they start an experiment on transient photoconductivity in a polymeric photoreceptor.

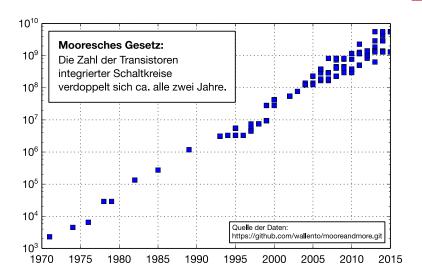
H. Bässler, A. Köhler

H. Bässler, A. Köhler, Top. Curr. Chem. 312:1-66, 2012


Elektronische Prozesse in organischen Halbleitern

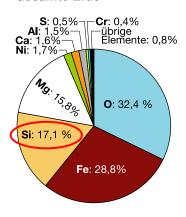
- elektronische Prozesse
 - elektronische Struktur
 - Ladungen und angeregte Zustände
 - elektronische und optische Prozesse
- Organik
 - Chemie des Kohlenstoffs und seiner Verbindungen
 - Wiederholung: relevante Besonderheiten des Kohlenstoffs
- Halbleiter
 - Leitfähigkeit zwischen Leiter und Isolator
 - Leitfähigkeit nimmt mit der Temperatur zu (Heißleiter)
- Große Spanne von Themengebieten
 - Festkörperphysik org. Chemie Photophysik/-chemie

Leiter – Halbleiter – Nichtleiter


Ein sehr einfaches Bild auf Basis des Bändermodells

Vorteile organischer Halbleiter

Es liegt nicht an der Leistungsfähigkeit anorganischer Halbleiter


Vorteile organischer Halbleiter

Es liegt nicht an der besseren Verfügbarkeit der Ausgangsmaterialien

Masseanteil der Elemente

Gesamte Erde

Erdkruste

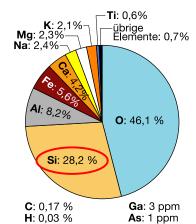


Bild: Wikipedia/Henry Mühlpfordt, eigene Bearbeitung

Vorteile organischer Halbleiter

Im Vergleich zu ihren anorganischen Pendants

Vorteile organischer Halbleiter

einfach prozessierbar

chemisch modifizierbar

mechanisch flexibel

leichtgewichtig

kostengünstig

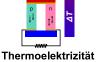
- Ausgangsstoffe in ausreichender Menge verfügbar
- organische Synthese vergleichsweise kostengünstig
- anorganische Halbleiter: meist monokristallines Silizium

einfach prozessierbar

- oft aus flüssiger Lösung heraus
- erlaubt die Verwendung etablierter Druckverfahren
- energieeffizient (keine hohen Temperaturen notwendig)

leichtgewichtig

- geringe Dichte
- geringe Schichtdicken
- ermöglicht großflächigen Einsatz


- mechanisch flexibel
 - abhängig von den verwendeten Substraten
 - Versprechen: flexible Substrate (⇒ "Wearables")
- chemisch modifizierbar
 - etablierte Protokolle der synthetischen Chemie
 - anorganische Halbleiter schwer chemisch zu modifizieren
- biologisch abbaubar
 - Idealvorstellung, könnte das Müllproblem reduzieren
 - Recyclingquote anorganischer Halbleiter eher gering
- Mögliche Anwendungsgebiete von Halbleitern können ganz neu gedacht werden.

Anwendungsgebiete organischer Halbleiter

Näher an unserem täglichen Leben als wir denken

Anwendungsgebiete organischer Halbleiter

Motivation: Warum organische Halbleiter?

Vergleich anorganischer und organischer Festkörper

Vergleich anorganischer und organischer Halbleiter

- kristalline Festkörper
 - dreidimensionale, periodische Anordnung von Atomen (oder Molekülen)
 - makroskopisch meist polykristallin
- amorphe Festkörper (Gläser)
 - Struktur ist auf keiner Längenskala kristallin
 - wesentliches Strukturmerkmal: nahezu konstanter Abstand zwischen den nächsten Nachbaratomen oder Molekülen
- Legierungen
 - verschiedene Atome besetzen statistisch die Plätze eines regelmäßigen Kristallgitters
- Eigenschaften von Festkörpern werden ganz wesentlich von den in ihnen herrschenden Bindungen bestimmt.

- ionisch
 - ungerichtete Coulomb-Wechselwirkung zwischen entgegengesetzt geladenenen Ionen
- metallisch
 - ungerichtete Coulomb-Wechselwirkung zwischen positiv geladenen Atomrümpfen und Elektronengas
- kovalent
 - gerichtete Wechselwirkung der Valenzelektronen der beteiligten Atome
- van-der-Waals
 - Wechselwirkung zwischen (induzierten) Dipolen durch zeitliche Fluktuation des Aufenthaltsortes des Elektrons

anorganische Festkörper

- ionisch
- metallisch
- kovalent

organische Festkörper

- van der Waals
- (kovalent)
- van-der-Waals-Wechselwirkung am schwächsten
- Molekül dominiert im organischen Festkörper

Motivation: Warum organische Halbleiter?

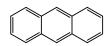
Vergleich anorganischer und organischer Festkörper

Vergleich anorganischer und organischer Halbleiter

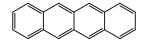
Vergleich wesentlicher Eigenschaften kristalliner Vertreter

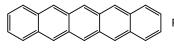
Eigenschaft	anorganisch	organisch
Permittivität, $\varepsilon_{\rm r}$	12–16	≈ 3.5
Kristallbasis	Atome	Moleküle
Bindungen	kovalent	van-der-Waals
Breite der Bänder	mehrere eV	$\approx 50500~meV$
Ladungsträgermobilitäten, μ	$10^3 - 10^4 \text{ cm}^2/(\text{Vs})$	$1-10 \text{ cm}^2/(\text{Vs})$
Bandlücke $E_{ m g}$	\approx 1 eV	3–5 eV
Ergebnis optischer Anregung	freie Ladungen	Exzitonen
Exzitonenbindungsenergie	$\approx 5 \text{ meV}$	0.5-1 eV
gerichtete Größen (u.a. $\varepsilon_{\rm r},\mu$)	isotrop	anisotrop
Leitfähigkeit	intrinsisch	extrinsisch

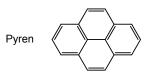
- molekulare Kristalle
 - Kristallbasis: Moleküle statt Atome
 - vergleichsweise hohe Ladungsträgermobilitäten
- amorphe molekulare Filme
 - durch Aufdampfen oder Coating erzeugt
 - Anwendung u.a. in LEDs
 - Xerografie: molekular dotierte Polymerfilme (MDP)
- Polymerfilme
 - normalerweise aus Lösung heraus prozessiert
 - besser als kleine Moleküle für Mischungen geeignet: thermodynamisch stabiler, geringere Kristallisationstendenz
- Fullerene und Kohlenstoffnanoröhrchen
 - n-Typ-Halbleiter in OPVs und OLEDs


Molekulare Kristalle

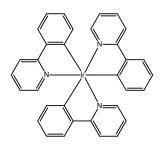
Typische Vertreter kristallbildender organischer Moleküle




Naphthalin


Anthracen

Tetracen

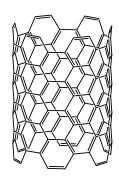

Pentacen

Amorphe molekulare Filme

Typische Vertreter kleiner organischer Moleküle



Ir(ppy)₃


CuPc

Fullerene und Kohlenstoffnanoröhrchen

Nanoröhrchen

Typische Vertreter

Motivation: Warum organische Halbleiter?

Vergleich anorganischer und organischer Festkörper

Vergleich anorganischer und organischer Halbleiter

Nur ein Verständnis auf *molekularer* Ebene hilft bei der Entwicklung effizienter (d.h. für den jeweiligen Anwendungszweck geeigneter) organischer Halbleiter.

- Molekül dominiert im organischen Festkörper
 - Grund: vergleichsweise schwache Wechselwirkung
 - im Polymer dominiert oft die Wiederholeinheit
- Voraussetzung der Interpretation von Experimenten:
 - Kenntnis der relevanten molekularen Prozesse

- elektronische Struktur molekulare Photophysik
 - elektronische Zustände eines Moleküls
 - Übergänge zwischen molekularen Zuständen
- Ladungen und angeregte Zustände
 - angeregte Moleküle von der Gasphase zum amorphen Film
 - angeregte Moleküle in kristallinen Phasen: Frenkel-Exziton
 - angeregte Zustände in π-konjugierten Polymeren
 - geladene Moleküle
- elektronische und optische Prozesse
 - Ladungsträgertransport
 - Dissoziation angeregter Zustände
 - Diffusion angeregter Zustände
 - Zerfall angeregter Zustände

- rationaler Entwurf organischer Halbleiter
 - Zusammensetzung aus Bausteinen
 - systematische Modifikationen: Rückgrat und Seitenketten
- Synthese
 - defektfrei
 - kontrollierbares Molekulargewicht (Polymerisationsgrad)
 - geringe Polydispersität
- organische elektronische Bausteine
 - LEDs, Solarzellen, Transistoren, ...
 - Charakteristika und Kennlinien
 - theoretische Modellierung
 - Aufbau und Funktionsweise
- (spektroskopische) Charakterisierungsmethoden

- Organische Elektronik umfasst mehrere Themengebiete: Festkörperphysik, org. Chemie, Photophysik/-chemie.
- Vorteile organischer gegenüber anorganischen Halbleitern: billig, leicht, flexibel, (fast) endlos anpassbar
- Organische Festkörper werden vom einzelnen Molekül und dessen Eigenschaften dominiert.
- Organische Halbleiter unterscheiden sich in wesentlichen Eigenschaften von ihren anorganischen Pendants.
- Nur ein Verständnis auf molekularer Ebene hilft bei der Entwicklung effizienter organischer Halbleiter.