Organische Elektronik Elektronische Prozesse in organischen Halbleitern

13. Ein persönlicher Ausblick: EPR-spektroskopische Untersuchung organischer Halbleitermaterialien

Albert-Ludwigs-Universität Freiburg

Dr. Till Biskup Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Sommersemester 2018

- UNI FREIBURG
- Elektronische Struktur und Morphologie sind entscheidend für die Effizienz organischer Halbleiterelemente.
- Zur Aufklärung der Struktur-Funktions-Beziehung bedarf es spektroskopischer Methoden mit molekularer Auflösung.
- Paramagnetische Zustände (Exzitonen, Ladungsträger, ...) spielen eine große Rolle in organischen Halbleitern.
- EPR-Spektroskopie erlaubt molekulare Auflösung und eindeutige Zuordnung paramagnetischer Spezies.
- Triplett-Zustände sind empfindliche Sonden f
 ür die lokale Umgebung, Orientierung und Ordnung von Polymeren.

Grundlegende Fragestellungen: Struktur-Funktions-Beziehung

Relevante Aspekte der EPR-Spektroskopie

Paramagnetische Zustände in organischen Halbleitern

Triplett-Zustände als lokale Sonden

Organische Elektronik

Ein großes Versprechen mit Potential für grundlegende Veränderungen

billig leichtgewichtig Organische Elektronik

> druckbar flexibel

OFETs

Thermoelektrizität

Synthetische Chemie: Moleküle können jeweils spezifisch angepasst werden... Y North Contraction of the second sec

OSCs

OLEDS

Grundlegende Fragestellungen

Viele Aspekte organischer Halbleiter sind noch unverstanden.

Sommersemester 2018

BURG

UNI FREIBURG

Abstimmung der Energieniveaus (HOMO und LUMO)

Design Rules for Donors in Bulk-Heterojunction Solar Cells – Towards 10 % Energy-Conversion Efficiency**

By Markus C. Scharber,* David Mühlbacher, Markus Koppe, Patrick Denk, Christoph Waldauf, Alan J. Heeger, and Christoph J. Brabec

Advanced Materials 18:789, 2006

Morphologie und Prozessierung

The Next Breakthrough for Organic Photovoltaics?

Nicholas E. Jackson,*^{,†} Brett M. Savoie,[†] Tobin J. Marks,* Lin X. Chen,* and Mark A. Ratner*

Journal of Physical Chemistry Letters 6:77, 2015

Energy level alignment determines the maximum efficiency under no-loss conditions, but the majority of materials are limited by practical morphological and processing concerns.

Grundlegende Fragestellungen Aspekte der Struktur-Funktions-Beziehung

Ziel

- ► Verständnis der Zusammenhänge auf molekularer Ebene
- gezielte Synthese und Modifikation von Molekülen

Voraussetzungen

- Sonde mit molekularer Auflösung
- interdisziplinärer Ansatz (Synthese, Experiment, Theorie)

mögliches Werkzeug

- der (ungepaarte) Elektronenspin
- EPR-Spektroskopie

BURG

Wechselwirkungen des Elektronenspins Der Elektronenspin als Sonde seiner lokalen Umgebung

$\frac{\text{Zeeman-WW}}{\mathcal{H}_{\text{FZ}} = \mu_{\text{B}} B g S}$

äußeres Magnetfeld

Hyperfein-WW $\mathcal{H}_{HF} = SA^0I + aSI$ umgebende Kerne

Dipolare WW $\mathcal{H}_{ZFS} = SDS$ zwischen Elektronen

Austausch-WW $\mathcal{H}_{\mathsf{EX}} = JS_1S_2$ zwischen Elektronen

Systeme mit zwei Elektronen

Eine Frage des Abstands zwischen den beiden Spins

IBURG

TTT I

Grundlegender Aufbau eines EPR-Spektrometers

Geringfügige Modifikationen je nach Anwendungsfall

TREPR

REIBURG

Paramagnetische Zustände in org. Halbleitern Ein einfaches Bild der Prozesse in einer organischen Solarzelle

TREPR

TRFPR

LEPR

🗼 cw-FPR

Paramagnetische Zustände in org. Halbleitern Was sich mit Hilfe der EPR-Spektroskopie detektieren lässt

Exzitonen

Sommersemester 2018

Singulett- oder Triplett-Zustände Ladungstransfer-Komplexe Spinkorrelierte Radikalpaare "Freie" Polaronen

ungepaarte Elektronen, Duplett-Zustände

Defekte, dotierte Moleküle

Stabilradikale, Duplett-Zustände

Jede Spezies hat ihren charakteristischen "Fingerabdruck" in der EPR-Spektroskopie.

Triplett-Zustände als lokale Sonden Die Erzeugung paramagnetischer Zustände in Polymeren

Singulett-Grundzustand diamagnetisch kein EPR-Signal angeregter Triplett-Zustand

paramagnetisch

EPR-Signal

Triplett-Zustände als lokale Sonden Einige für die EPR-Spektroskopie wichtige Eigenschaften

- Wechselwirkung abhängig vom Abstand (R) zwischen den Spins
- Wechselwirkung abhängig vom Winkel (θ) zum Magnetfeld (B).
- Wechselwirkung charakterisiert durch zwei Parameter (D und E).
- Optische Anregung führt zu Nicht-Boltzmann-Populationen
- Mittels TREPR-Spektroskopie an Triplett-Zuständen lassen sich Delokalisation und Orientierung untersuchen.

Ordering of PCDTBT Revealed by Time-Resolved Electron Paramagnetic Resonance Spectroscopy of Its Triplet Excitons

Till Biskup,* Michael Sommer, Stephan Rein, Deborah L. Meyer, Markus Kohlstädt, Uli Würfel, Stefan Weber

Angew. Chem. Int. Ed. 54:7707, 2015

Morphologie von Polymerfilmen auf Substrat Orientierung des Rückgrats und Grad der Ordnung

1. Drop-cast auf PET 2. Orientierungsabhängige TREPR

2

Morphologie von Polymerfilmen auf Substrat Orientierung des Rückgrats und Grad der Ordnung

Simulationen

- Globale Anpassung aller Spektren
- Gauß-Verteilung der Orientierungen

Ergebnisse

- PCDTBT-Filme zeigen starke Ordnung
- Polymerrückgrat liegt auf dem Substrat

Ř

8

Direct $S_0 \rightarrow T$ Excitation of a Conjugated Polymer Repeat Unit: Unusual Spin-Forbidden Transitions Probed by Time-Resolved EPR Spectroscopy

Deborah L. Meyer, Florian Lombeck, Sven Huettner, Michael Sommer, Till Biskup

Triplett-Entstehungswege

Direkte $S_0 \rightarrow$ T-Anregung: lange vergessen und doch real

UNI FREIBURG

$$\label{eq:constraint} \begin{split} Triplett-Entstehungswege \\ \mbox{Direkte $S_0 \rightarrow T-Anregung: lange vergessen und doch real} \end{split}$$

TBT Entirely Dominates the Electronic Structure of the Conjugated Copolymer PCDTBT: Insights from Time-Resolved EPR Spectroscopy

Clemens Matt, Deborah L. Meyer, Florian Lombeck, Michael Sommer, Till Biskup

Macromolecules 51:4341, 2018

Elektronische Struktur konjugierter Polymere Vom Baustein zum Polymer: EPR-Spektroskopie und DFT-Rechnungen

CbzTBT

TBT

PCDTBT

Ċ₈H₁7

Elektronische Struktur konjugierter Polymere Vom Baustein zum Polymer: EPR-Spektroskopie und DFT-Rechnungen

Elektronische Struktur konjugierter Polymere Vom Baustein zum Polymer: EPR-Spektroskopie und DFT-Rechnungen

Wiederholung: Grundlegende Fragestellungen EPR-Spektroskopie kann Beiträge zu allen Aspekten leisten

- UNI FREIBURG
- Elektronische Struktur und Morphologie sind entscheidend für die Effizienz organischer Halbleiterelemente.
- Zur Aufklärung der Struktur-Funktions-Beziehung bedarf es spektroskopischer Methoden mit molekularer Auflösung.
- Paramagnetische Zustände (Exzitonen, Ladungsträger, ...) spielen eine große Rolle in organischen Halbleitern.
- EPR-Spektroskopie erlaubt molekulare Auflösung und eindeutige Zuordnung paramagnetischer Spezies.
- Triplett-Zustände sind empfindliche Sonden f
 ür die lokale Umgebung, Orientierung und Ordnung von Polymeren.