Dynamik und Kinetik Zeitabhängige Prozesse jenseits des Gleichgewichts

06. Kettenreaktionen und Polymerisationen

PD Dr. Till Biskup Physikalische Chemie Universität des Saarlandes Wintersemester 2020/21

- Die Aufklärung des Mechanismus der Bromwasserstoff-Bildung ist ein Musterbeispiel guter wissenschaftlicher Praxis.
- Verzweigte Kettenreaktionen haben immer die Tendenz, zum explosiven Ablauf der Reaktion zu führen.
- Es gibt zwei Mechanismen für chemische Explosionen, deren physikalische Voraussetzungen unterschiedlich sind.
- Kettenpolymerisationen sind lineare Kettenreaktionen, die zu hohen Polymerisationsgraden führen.
- Schrittweise Polymerisation und Kettenpolymerisation lassen sich unterschiedlich kinetisch kontrollieren.

Übersicht

Lineare Kettenreaktionen

Verzweigte Kettenreaktionen und Explosionen

Kettenpolymerisation

Schrittweise Polymerisation

Allgemeines Schema der Bildung von Halogenwasserstoffen

$$H_2 + X_2 \longrightarrow 2 HX$$
 (1)

X - Halogenatom

- ► Von Bodenstein und Mitarbeitern früh im 20. Jahrhundert experimentell untersucht
- ▶ Wesentliche Beiträge zur chemischen Reaktionskinetik

? Frage

Warum hat Bodenstein diese Art von Reaktionen ausgewählt, um grundlegende Fragestellungen der Kinetik zu bearbeiten?

Zur Einführung

Reaktion von lod und Wasserstoff zu lodwasserstoff:

$$H_2 + I_2 \longrightarrow 2 HI$$
 (2)

Das zugehörige (empirische) Zeitgesetz (Bodenstein, 1899)

$$\frac{\mathrm{d[HI]}}{\mathrm{d}t} = k[\mathrm{H}_2][\mathrm{I}_2] \tag{3}$$

- Zeitgesetz einer Elementarreaktion zweiter Ordnung
- Aber: sagt nichts über den Mechanismus aus

Rückgriff auf frühere Vorlesung

Von Bodenstein für die Bestimmung des Gleichgewichts verwendet

Zur Einführung

Reaktion der Halogene mit Wasserstoff zu Halogenwasserstoffen

Reaktion von Brom und Wasserstoff zu Bromwasserstoff:

$$H_2 + Br_2 \longrightarrow 2 HBr$$
 (4)

Das zugehörige (empirische) Zeitgesetz (Bodenstein/Lind, 1907)

$$\frac{d[HBr]}{dt} = \frac{k[H_2][Br_2]^{3/2}}{[Br_2] + k'[HBr]} = \frac{k[H_2][Br_2]^{1/2}}{1 + k'\frac{[HBr]}{[Br_2]}}$$
(5)

- kompliziertes Zeitgesetz ohne klar bestimmbare Reaktionsordnung
- klarer Hinweis auf einen deutlich komplexeren Reaktionsverlauf

Prage

Und jetzt? Wie würde man weiter vorgehen wollen?

Die Reaktion von Brom und Wasserstoff

Der Erklärungsansatz von Christiansen, Herzfeld und Polányi (1919/20)

Vorschlag von Christiansen, Herzfeld und Polányi (1919/20):

$$M + Br_2 \xrightarrow{k_1} 2 Br \cdot + M$$

$$Br \cdot + H_2 \xrightarrow{k_2} HBr + H \cdot$$

$$H \cdot + Br_2 \xrightarrow{k_3} HBr + Br \cdot$$

$$H \cdot + HBr \xrightarrow{k_4} H_2 + Br \cdot$$

$$M + 2 Br \cdot \xrightarrow{k_5} Br_2 + M^*$$

- komplexes Reaktionsschema mit einigen Besonderheiten
- Intermediate werden während der Reaktion nachgebildet (!)

J. A. Christiansen, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 1(1919):14
K. F. Herzfeld, Ann. Physik 364(1919):635-667
M. Polányi, Z. Elektrochem. 26(1920):49-54

Ein bisschen Nomenklatur

Kettenreaktion und Kettenträger

Kettenreaktion

Reaktion, bei der ein in einem Schritt gebildetes Zwischenprodukt im nächsten Schritt ein weiteres Zwischenprodukt bildet. Erstmalig von Christiansen, Herzfeld und Polányi vorgeschlagen.

彦 Kettenträger

reaktives Zwischenprodukt in einer Kettenreaktion, das während der Reaktion nachgebildet wird; typische Kettenträger in chemischen Kettenreaktionen sind Radikale oder Ionen; bei der Kernspaltung übernehmen Neutronen die Rolle als Kettenträger.

Genauerer Blick auf den CHP-Mechanismus

Der CHP-Mechanismus Ein genauerer Blick

Der CHP-Mechanismus für die Reaktion von Brom und Wasserstoff:

Kettenstart:
$$M + Br_2 \xrightarrow{k_1} 2 Br \cdot + M$$
 (6)

Kettenfortpflanzung:
$$\operatorname{Br} \cdot + \operatorname{H}_2 \xrightarrow{k_2} \operatorname{HBr} + \operatorname{H} \cdot$$
 (7)

$$H \cdot + Br_2 \xrightarrow{k_3} HBr + Br \cdot$$
 (8)

Inhibierung:
$$H \cdot + HBr \xrightarrow{k_4} H_2 + Br \cdot$$
 (9)

Kettenabbruch:
$$M + 2 \operatorname{Br} \cdot \xrightarrow{k_5} \operatorname{Br}_2 + M^*$$
 (10)

M - (inerter) Stoßpartner für Kettenstart und -Abbruch

- vier Arten von Elementarreaktionen unterscheidbar
- weiteres Vorgehen: Geschwindigkeitsgesetze aufstellen und mit empirischem Befund (Bodenstein/Lind) überprüfen

Ein bisschen Nomenklatur

Kettenstart und Kettenfortpflanzung

Kettenstart

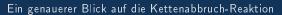
erster Schritt einer Kettenreaktion, bei dem die Kettenträger initial gebildet werden; im Fall homolytischer Spaltung durch thermische oder lichtinduzierte Bindungsbrüche vermittelt

Kettenfortpflanzung

Reaktionsschritt innerhalb einer Kettenreaktion, bei dem aus einem Zwischenprodukt (Kettenträger) ein weiteres Zwischenprodukt (Kettenträger) erzeugt wird, so dass die Konzentration der Kettenträger konstant bleibt; kann aus mehreren Elementarreaktionen zusammengesetzt sein

Ein bisschen Nomenklatur

Inhibierung und Kettenabbruch


📂 Inhibierung

Verlangsamung der Produktbildung durch Konkurrenzreaktionen; führt bei Kettenreaktionen nicht zum Kettenabbruch, da nicht alle Kettenträger vernichtet werden.

Kettenabbruch

Durch Rekombination der Kettenträger vermittelter Abbruch der Kettenreaktion; eliminiert die Kettenträger

Kettenabbruch-Reaktion im CHP-Mechanismus

$$M + 2 Br \cdot \xrightarrow{k_5} Br_2 + M^*$$

? Frage

Warum benötigt der Kettenabbruch bei der Reaktion zweier Brom-Radikale einen zusätzlichen Stoßpartner? Gilt das grundsätzlich für die Desaktivierung von Radikalen durch Zweierstöße?

r Impulserhaltung

Für ein gegebenes System ist der Impuls (p = mv) konstant.

Auf dem Weg zu den Geschwindigkeitsgesetzen

Aus dem Reaktionsschema des CHP-Mechanismus lassen sich sofort die Geschwindigkeitsgesetze herleiten:

$$M + Br_2 \xrightarrow{k_1} 2 Br \cdot + M \qquad v_1 = k_1[Br_2][M]$$
 (11)

$$\operatorname{Br} \cdot + \operatorname{H}_2 \xrightarrow{k_2} \operatorname{HBr} + \operatorname{H} \cdot \qquad v_2 = k_2 [\operatorname{Br} \cdot] [\operatorname{H}_2]$$
 (12)

$$H \cdot + Br_2 \xrightarrow{k_3} HBr + Br \cdot \qquad v_3 = k_3[H \cdot][Br_2]$$
 (13)

$$H \cdot + HBr \xrightarrow{k_4} H_2 + Br \cdot \qquad v_4 = k_4[H \cdot][HBr]$$
 (14)

$$M + 2 \operatorname{Br} \cdot \xrightarrow{k_5} \operatorname{Br}_2 + M^* \qquad v_5 = k_5 [\operatorname{Br} \cdot]^2 [M]$$
 (15)

- Gesucht: Geschwindigkeitsgesetz für die Bildung von HBr
- Hinweis: stöchiometrische Faktoren der Edukte sind negativ

Nettobildungsgeschwindigkeit von Bromwasserstoff:

$$\frac{d[HBr]}{dt} = k_2[Br \cdot][H_2] + k_3[H \cdot][Br_2] - k_4[H \cdot][HBr]$$
 (16)

- ► Summe aus Kettenfortpflanzungs- und Inhibitionsschritten
- Differenzialgleichung ohne geschlossene analytische Lösung
- numerische Lösung oder Näherungslösung unter Wahl geschickter Annahmen

Prage

Welche Näherung ließe sich hier mit welcher Begründung einführen? Auf welche Zusammenhänge müsste sie angewandt werden?

Gesucht: Das Geschwindigkeitsgesetz für die Bromwasserstoffbildung

- zwei bei der Kettenreaktion auftretende Intermediate: Br · und H ·
- Annahme: kurzlebig, da hochreaktiv
- Bodensteinsche Quasistationaritätsbedingung für die Konzentrationen dieser beiden Intermediate anwenden

Nettobildungsgeschwindigkeiten der beiden Intermediate:

$$\frac{d[H \cdot]}{dt} = k_2[Br \cdot][H_2] - k_3[H \cdot][Br_2] - k_4[H \cdot][HBr]$$
 (17)

$$\frac{d[H \cdot]}{dt} = k_2[Br \cdot][H_2] - k_3[H \cdot][Br_2] - k_4[H \cdot][HBr] \qquad (17)$$

$$\frac{d[Br \cdot]}{dt} = 2k_1[Br_2][M] - k_2[Br \cdot][H_2] + k_3[H \cdot][Br_2]$$

$$+ k_4[H \cdot][HBr] - k_5[Br \cdot]^2[M^*]$$
(18)

rgeben sich aus den Geschwindigkeitsgesetzen der Teilreaktionen

Quasistationaritätsbedingung für die beiden Intermediate:

$$\frac{\mathrm{d}[\mathrm{H}\,\cdot\,]}{\mathrm{d}t} = 0 \qquad \qquad \frac{\mathrm{d}[\mathrm{Br}\,\cdot\,]}{\mathrm{d}t} = 0 \tag{19}$$

Kettenfortpflanzung: H · und Br · ständig ineinander umgewandelt:

$$\frac{\mathrm{d}[\mathrm{H}\,\cdot\,]}{\mathrm{d}t} = -\frac{\mathrm{d}[\mathrm{Br}\,\cdot\,]}{\mathrm{d}t} \tag{20}$$

$$\frac{\mathrm{d}[\mathrm{H}\,\cdot\,]}{\mathrm{d}t} + \frac{\mathrm{d}[\mathrm{Br}\,\cdot\,]}{\mathrm{d}t} = 0 \tag{21}$$

- Gleichungen für die Nettobildungsgeschwindigkeiten der beiden Intermediate lassen sich aufaddieren
- starke Vereinfachung der Gleichungen

Gesucht: Das Geschwindigkeitsgesetz für die Bromwasserstoffbildung

$$\frac{d[\mathbf{H} \cdot]}{dt} = k_2[\mathbf{Br} \cdot][\mathbf{H}_2] - k_3[\mathbf{H} \cdot][\mathbf{Br}_2] - k_4[\mathbf{H} \cdot][\mathbf{HBr}]$$
$$\frac{d[\mathbf{Br} \cdot]}{dt} = 2k_1[\mathbf{Br}_2][\mathbf{M}] - k_2[\mathbf{Br} \cdot][\mathbf{H}_2] + k_3[\mathbf{H} \cdot][\mathbf{Br}_2]$$
$$+ k_4[\mathbf{H} \cdot][\mathbf{HBr}] - k_5[\mathbf{Br} \cdot]^2[\mathbf{M}^*]$$

$$k_{2}[\text{Br} \cdot][\text{H}_{2}] - k_{3}[\text{H} \cdot][\text{Br}_{2}] - k_{4}[\text{H} \cdot][\text{HBr}]$$

$$+2k_{1}[\text{Br}_{2}][\text{M}] - k_{2}[\text{Br} \cdot][\text{H}_{2}] + k_{3}[\text{H} \cdot][\text{Br}_{2}]$$

$$+k_{4}[\text{H} \cdot][\text{HBr}] - k_{5}[\text{Br} \cdot]^{2}[\text{M}^{*}] = 0$$

$$2k_{1}[\text{Br}_{2}][\text{M}] - k_{5}[\text{Br} \cdot]^{2}[\text{M}^{*}] = 0$$

$$2k_{1}[\text{Br}_{2}] - k_{5}[\text{Br} \cdot]^{2} = 0$$
(24)

Begründung für letzten Schritt: M und M \cdot letztlich chemisch identisch

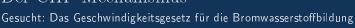
#3.

Gesucht: Das Geschwindigkeitsgesetz für die Bromwasserstoffbildung

Damit lässt sich jetzt sofort eine Beziehung für Br · herleiten:

$$2k_1[Br_2] - k_5[Br \cdot]^2 = 0$$

$$k_5[Br \cdot]^2 = 2k_1[Br_2]$$
(25)


$$[\mathrm{Br} \cdot] = \sqrt{\frac{k_1}{k_5}} [\mathrm{Br}_2]^{1/2}$$
 (26)

Aus dem Geschwindigkeitsgesetz für die Bildung von H· lässt sich durch Umstellen ebenso eine Beziehung für [H·] herleiten:

$$k_2[\text{Br} \cdot][\text{H}_2] - k_3[\text{H} \cdot][\text{Br}_2] - k_4[\text{H} \cdot][\text{HBr}] = 0$$
 (27)

$$[H \cdot](k_3[Br_2] + k_4[HBr]) = k_2[Br \cdot][H_2]$$
 (28)

$$[H \cdot] = \frac{k_2[Br \cdot][H_2]}{k_3[Br_2] + k_4[HBr]}$$
 (29)

Ergebnis bisher:

$$[Br \cdot] = \sqrt{\frac{k_1}{k_5}} [Br_2]^{1/2}$$
$$[H \cdot] = \frac{k_2 [Br \cdot] [H_2]}{k_3 [Br_2] + k_4 [HBr]}$$

Durch Einsetzen der Beziehung für Br · ergibt sich:

$$[H \cdot] = \frac{k_2 \sqrt{\frac{k_1}{k_5}} [Br_2]^{1/2} [H_2]}{k_3 [Br_2] + k_4 [HBr]}$$
(30)

 Einsetzen der Beziehungen für die Intermediatkonzentrationen in das Geschwindigkeitsgesetz für die Bildung des Produktes HBr

13 m

Gesucht: Das Geschwindigkeitsgesetz für die Bromwasserstoffbildung

Geschwindigkeitsgesetz für die Bildung des Produktes HBr:

$$\frac{\mathrm{d[HBr]}}{\mathrm{d}t} = k_2[\mathrm{Br}\cdot][\mathrm{H}_2] + k_3[\mathrm{H}\cdot][\mathrm{Br}_2] - k_4[\mathrm{H}\cdot][\mathrm{HBr}]$$

Allerdings empfiehlt es sich hier, zunächst den Term $[H\cdot]$ auf der rechten Seite auszuklammern und erst dann einzusetzen:

$$\frac{d[HBr]}{dt} = k_2[Br \cdot][H_2] + [H \cdot](k_3[Br_2] - k_4[HBr])$$

$$= k_2 \sqrt{\frac{k_1}{k_5}}[Br_2]^{1/2}[H_2]$$

$$+ \frac{k_2 \sqrt{\frac{k_1}{k_5}}[Br_2]^{1/2}[H_2]}{k_3[Br_2] + k_4[HBr]} (k_3[Br_2] - k_4[HBr])$$
(32)

Gesucht: Das Geschwindigkeitsgesetz für die Bromwasserstoffbildung

Gemeinsamer Hauptnenner durch Erweiterung des linken Summanden:

$$\frac{d[HBr]}{dt} = \frac{k_3[Br_2] + k_4[HBr]}{k_3[Br_2] + k_4[HBr]} k_2 \sqrt{\frac{k_1}{k_5}} [Br_2]^{1/2} [H_2]
+ \frac{k_2 \sqrt{\frac{k_1}{k_5}} [Br_2]^{1/2} [H_2]}{k_3[Br_2] + k_4[HBr]} (k_3[Br_2] - k_4[HBr])$$
(33)

Ausklammern des vormals linken Summanden:

$$\frac{d[HBr]}{dt} = \frac{k_2 \sqrt{\frac{k_1}{k_5}} [Br_2]^{1/2} [H_2] \left(k_3 [Br_2] + k_4 [HBr] + k_3 [Br_2] - k_4 [HBr] \right)}{k_3 [Br_2] + k_4 [HBr]}$$
(34)

Zusammenfassen der Terme in Klammern im Zähler

Gesucht: Das Geschwindigkeitsgesetz für die Bromwasserstoffbildung

Zusammenfassen der Terme in Klammern im Zähler

$$\frac{d[HBr]}{dt} = \frac{k_2 \sqrt{\frac{k_1}{k_5}} [Br_2]^{1/2} [H_2] (2k_3[Br_2])}{k_3[Br_2] + k_4[HBr]}$$
(35)

$$= \frac{k_3 2k_2 \sqrt{\frac{k_1}{k_5}} [\text{Br}_2]^{1/2} [\text{H}_2] [\text{Br}_2]}{k_3 ([\text{Br}_2] + \frac{k_4}{k_3} [\text{HBr}])}$$
(36)

$$\frac{d[HBr]}{dt} = \frac{2k_2\sqrt{\frac{k_1}{k_5}}[H_2][Br_2]^{3/2}}{[Br_2] + \frac{k_4}{k_3}[HBr]}$$
(37)

- ▶ Potenzgesetze beachten: $[Br]^{1/2}[Br] = [Br]^{3/2}$
- hat bereits die gleiche Form wie das empirisch von Bodenstein gefundene Geschwindigkeitsgesetz

Gefunden: Das Geschwindigkeitsgesetz für die Bromwasserstoffbildung

Assoziieren der phänomenologischen Geschwindigkeiten k und k^\prime mit

$$k = 2k_2 \sqrt{\frac{k_1}{k_5}} \qquad k' = \frac{k_4}{k_3} \tag{38}$$

ergibt das Geschwindigkeitsgesetz

$$\frac{d[HBr]}{dt} = \frac{k[H_2][Br_2]^{3/2}}{[Br_2] + k'[HBr]}$$
(39)

identisch mit dem empirischen Geschwindigkeitsgesetz

? Frage

Was lässt sich aus diesem Geschwindigkeitsgesetz ablesen?

Die Reaktion von Brom und Wasserstoff

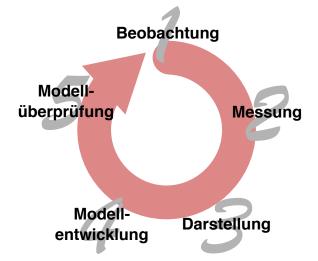
Geschwindigkeitsgesetz für die HBr-Bildung: ein zweiter Blick

Geschwindigkeitsgesetz für die HBr-Bildung: ein zweiter Blick

$$\frac{\mathrm{d[HBr]}}{\mathrm{d}t} = \frac{k[\mathrm{H}_2][\mathrm{Br}_2]^{3/2}}{[\mathrm{Br}_2] + k'[\mathrm{HBr}]}$$

- Konzentration des Produktes, [HBr], taucht im Nenner auf
- Geschwindigkeit verringert sich mit fortschreitender Reaktion
- Produkt hemmt die Reaktion (Inhibierung)

Aus dem CHP-Mechanismus heraus sofort ersichtlich:


Inhibierung:
$$H \cdot + HBr \xrightarrow{k_4} H_2 + Br \cdot$$

Edukt Br₂ und Produkt HBr konkurrieren um Kettenträger H.

Wissenschaftliches Arbeiten

Die Bromwasserstoffreaktion: Beispiel guter wissenschaftlicher Praxis

Übersicht

Lineare Kettenreaktionen

Verzweigte Kettenreaktionen und Explosionen

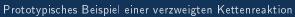
Kettenpolymerisation

Schrittweise Polymerisation

Verzweigte Kettenreaktionen

lineare Kettenreaktionen

Zahl der Kettenträger über den Reaktionsverlauf konstant verzweigte Kettenreaktionen


Zahl der Kettenträger nimmt im Reaktionsverlauf zu.

Kettenverzweigung

(Folge von) Elementarreaktion(en) im Verlauf einer Kettenreaktion, bei der mehr als ein Kettenträger entsteht

Frage

Was ist eine mögliche Folge verzweigter Kettenreaktionen?

Prototypisches Beispiel: Knallgas-Reaktion:

$$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(g)$$
 (40)

- weithin bekannt
- sieht sehr einfach aus
- Mechanismus kompliziert, nicht vollständig aufgeklärt

gesicherte Fakten

verzweigte Kettenreaktion

Prage

Reagiert ein Knallgasgemisch nach Zündung immer explosionsartig?

Einige der daran beteiligten Reaktionsschritte

Einige an der Knallgasreaktion beteiligte Reaktionsschritte:

Kettenstart:
$$H_2 \xrightarrow{k_1} 2 H$$
 (41)

$$H_2 + O_2 + W \xrightarrow{k_1'} 2 \cdot OH + W$$
 (42)

Kettenfortpflanzung:
$$H_2 + \cdot OH \xrightarrow{k_2} H \cdot + H_2O$$
 (43)

Kettenverzweigung:
$$O_2 + H \cdot \xrightarrow{k_3} \cdot O \cdot + \cdot OH$$
 (44)

$$\cdot \text{O} \cdot + \text{H}_2 \xrightarrow{k_3'} \cdot \text{OH} + \text{H} \cdot$$
 (45)

Kettenabbruch:
$$H \cdot + W \xrightarrow{k_4} \frac{1}{2} H_2$$
 (46)

$$H \cdot + O_2 + M \xrightarrow{k'_4} HO_2 \cdot + M^*$$
 (47)

 $W-W \ddot{a} n de \ des \ Reaktionsraumes; \ M-(inerter) \ Stoßpartner$

Ein paar Anmerkungen

Anmerkungen

- ▶ drei radikalische Spezies als Kettenträger: H·, ·O· und ·OH
- ► HO₂ · entstehen in der Abbruchreaktion, eher reaktionsträge
- alle Radikale werden durch Interaktion mit Wänden inaktiviert
- ightharpoonup HO $_2$ · sonst Ausgangspunkt weiterer Reaktionen u.a. zu H $_2$ O $_2$

Voraussetzungen für Explosion

- Verzweigung dominiert über Kettenabbruch
- ▶ letztlich makroskopische Parameter: Druck, Temperatur
- r formal für Knallgasreaktion herleitbar
- Kriterium für Explosionsbeginn: schneller Anstieg von [H·]
- rur H., weil · OH und · O· sehr reaktiv

Formale Herleitung der Kriterien für die Explosion

Sei die Bildungsgeschwindigkeit $v_{\rm rad}$ von Radikalen gleich jener der H \cdot -Radikale, dann gilt mit der Geschwindigkeit $v_{
m S}$ des Kettenstarts:

$$v_{\rm rad} = \frac{dH \cdot}{dt} = v_{\rm S} + k_2 [\cdot OH][H_2] - k_3 [H \cdot][O_2] + k_3' [\cdot O \cdot][H_2] - k_4 [H \cdot] - k_4' [H \cdot][O_2][M]$$
(48)

Für die Bildungsgeschwindigkeiten der Intermediate ergibt sich:

$$\frac{\mathrm{d}[\cdot \mathrm{OH}]}{\mathrm{d}t} = -k_2[\cdot \mathrm{OH}][\mathrm{H}_2] + k_3[\mathrm{H}\cdot][\mathrm{O}_2] + k_3'[\cdot \mathrm{O}\cdot][\mathrm{H}_2] \tag{49}$$

$$\frac{\mathrm{d}[\cdot \mathrm{OH}]}{\mathrm{d}t} = -k_2[\cdot \mathrm{OH}][\mathrm{H}_2] + k_3[\mathrm{H} \cdot][\mathrm{O}_2] + k_3'[\cdot \mathrm{O} \cdot][\mathrm{H}_2] \qquad (49)$$

$$\frac{\mathrm{d}[\cdot \mathrm{O} \cdot]}{\mathrm{d}t} = k_3[\mathrm{H} \cdot][\mathrm{O}_2] - k_3'[\cdot \mathrm{O} \cdot][\mathrm{H}_2] \qquad (50)$$

Formale Herleitung der Kriterien für die Explosion

 $[\cdot OH]$ und $[\cdot O \cdot]$ hochreaktiv, deshalb Konzentration verhältnismäßig klein, Konzentrationsänderung vernachlässigbar

Bodensteinsche Quasistationaritätsbedingung erfüllt

$$\frac{\mathrm{d}[\cdot \mathrm{OH}]}{\mathrm{d}t} = 0 \qquad \qquad \frac{\mathrm{d}[\cdot \mathrm{O}\cdot]}{\mathrm{d}t} = 0 \tag{51}$$

Damit lassen sich die Gleichungen durch Umstellen lösen.

$$\frac{\mathrm{d}[\cdot \mathrm{O} \cdot]}{\mathrm{d}t} = 0 = k_3[\mathrm{H} \cdot][\mathrm{O}_2] - k_3'[\cdot \mathrm{O} \cdot][\mathrm{H}_2]$$
 (52)

$$k_3'[\cdot O \cdot][H_2] = k_3[H][O_2]$$
 (53)

$$[\cdot O \cdot] = \frac{k_3[H][O_2]}{k_3'[H_2]}$$
 (54)

Formale Herleitung der Kriterien für die Explosion

$$\frac{d[\cdot OH]}{dt} = 0 = -k_2[\cdot OH][H_2] + k_3[H \cdot][O_2] + k_3'[\cdot O \cdot][H_2]$$
 (55)

$$k_2[\cdot OH][H_2] = k_3[H \cdot][O_2] + k_3'[\cdot O \cdot][H_2]$$
 (56)

$$[\cdot OH] = \frac{k_3[H \cdot][O_2] + k_3'[\cdot O \cdot][H_2]}{k_2[H_2]}$$
(57)

$$[\cdot OH] = \frac{k_3[H \cdot][O_2] + k_3'[H_2] \frac{k_3[H \cdot][O_2]}{k_3'[H_2]}}{k_2[H_2]}$$
(58)

$$[\cdot OH] = \frac{k_3[H \cdot][O_2] + k_3[H \cdot][O_2]}{k_2[H_2]} = \frac{2k_3[H \cdot][O_2]}{k_2[H_2]}$$
(59)

Die Ergebnisse lauten also entsprechend:

$$[\cdot O \cdot] = \frac{k_3 [H \cdot] [O_2]}{k_3' [H_2]}$$
 (60)

$$[\cdot OH] = \frac{2k_3[H \cdot][O_2]}{k_2[H_2]}$$
 (61)

Einsetzen in die Gleichung für die Bildungsgeschwindigkeit von $[\mathsf{H}\cdot]$

$$v_{\text{rad}} = \frac{dH \cdot}{dt} = v_{S} + k_{2}[\cdot OH][H_{2}] - k_{3}[H \cdot][O_{2}] + k'_{3}[\cdot O \cdot][H_{2}] - k_{4}[H \cdot] - k'_{4}[H \cdot][O_{2}][M]$$

Formale Herleitung der Kriterien für die Explosion

$$v_{\text{rad}} = \frac{dH \cdot}{dt} = v_{\text{S}} + k_{2}[\cdot \text{OH}][\text{H}_{2}] - k_{3}[\text{H} \cdot][\text{O}_{2}]$$

$$+ k'_{3}[\cdot \text{O} \cdot][\text{H}_{2}] - k_{4}[\text{H} \cdot] - k'_{4}[\text{H} \cdot][\text{O}_{2}][\text{M}]$$

$$= v_{\text{S}} + k_{2}[\text{H}_{2}] \frac{2k_{3}[\text{H} \cdot][\text{O}_{2}]}{k_{2}[\text{H}_{2}]} - k_{3}[\text{H} \cdot][\text{O}_{2}]$$

$$+ k'_{3}[\text{H}_{2}] \frac{k_{3}[\text{H} \cdot][\text{O}_{2}]}{k'_{3}[\text{H}_{2}]} - k_{4}[\text{H} \cdot] - k'_{4}[\text{H} \cdot][\text{O}_{2}][\text{M}]$$

$$= v_{\text{S}} + 2k_{3}[\text{H} \cdot][\text{O}_{2}] - k_{3}[\text{H} \cdot][\text{O}_{2}] + k_{3}[\text{H} \cdot][\text{O}_{2}]$$

$$- k_{4}[\text{H} \cdot] - k'_{4}[\text{H} \cdot][\text{O}_{2}][\text{M}]$$

$$= v_{\text{S}} + 2k_{3}[\text{H} \cdot][\text{O}_{2}] - k_{4}[\text{H} \cdot] - k'_{4}[\text{H}][\text{O}_{2}][\text{M}]$$

$$= v_{\text{S}} + 2k_{3}[\text{H} \cdot][\text{O}_{2}] - k_{4}[\text{H} \cdot] - k'_{4}[\text{H}][\text{O}_{2}][\text{M}]$$

$$(64)$$

 $v_{\rm rad} = v_{\rm S} + (2k_3[O_2] - k_4 - k'_4[O_2][M])[H \cdot]$

(65)

Formale Herleitung der Kriterien für die Explosion

In einem weiteren Schritt fasst man die Ratenkonstanten für die Verzweigung zu $k_{\rm V}$ und für den Abbruch zu $k_{\rm A}$ zusammen:

$$k_{\rm V} = 2k_3[{\rm O}_2]$$
 $k_{\rm A} = k_4 + k_4'[{\rm O}_2][{\rm M}]$ (66)

Damit ergibt sich für die Konzentration der [H·]-Radikale, die oben als Indikator für die Explosionsgrenze festgelegt wurden:

$$\frac{\mathrm{d}[\mathrm{H}\,\cdot\,]}{\mathrm{d}t} = v_{\mathrm{S}} + (k_{\mathrm{V}} - k_{\mathrm{A}})[\mathrm{H}\,\cdot\,] \tag{67}$$

Fallunterscheidung:

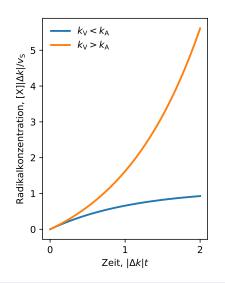
- \blacktriangleright Kettenabbruch dominiert, $k_{
 m V} < k_{
 m A}$
- ightharpoonup Kettenverzweigung dominiert, $k_{
 m V}>k_{
 m A}$

Fall 1: Kettenabbruch dominiert, $k_{ m V} < k_{ m A}$

$$[H \cdot] = \frac{v_S}{k_A - k_V} \left(1 - \exp\left(-(k_A - k_V)t\right) \right) \tag{68}$$

- im Fall niedriger O₂-Konzentration
- Verbrennung von Wasserstoff

Fall 2: Verzweigung dominiert, $k_{ m V} > k_{ m A}$


$$[H \cdot] = \frac{v_S}{k_V - k_A} \left(\exp\left((k_V - k_A)t \right) - 1 \right)$$
 (69)

- ▶ im Fall hoher O₂-Konzentration
- explosionsartiger Reaktionsfortschritt

Die Knallgasreaktion

Kriterien für die Explosion

$$\Delta k = k_{\rm V} - k_{\rm A}$$

Fall 1: $k_{
m V} < k_{
m A}$

$$[H \cdot] \frac{v_S}{|\Delta k|} = 1 - \exp(-|\Delta k|t)$$

Fall 2: $k_{\rm V} > k_{\rm A}$

$$[H \cdot] \frac{v_S}{|\Delta k|} = \exp(|\Delta k|t) - 1$$

Die Knallgasreaktion

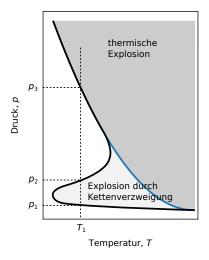
Kriterien für die Explosion: Anmerkungen und Fragen

Hinweis

- Annahme eines quasistationären Zustands für eine Explosion zugegeben etwas fragwürdig
- entscheidend: Abschätzung liefert Hinweise, warum es unterschiedliche Regime gibt

Regime

- ruhige Verbrennung
- ▶ lawinenartige Zunahme der Kettenträger, Explosion


Fragen

- ▶ Basieren Explosionen immer auf verzweigten Kettenreaktionen?
- Welche Bedingungen müssen für Explosionen gegeben sein?
- Genauere Betrachtung der Explosionsregime

Explosionen

Nicht nur durch verzweigte Kettenreaktionen

drei Explosionsgrenzen

- $ightharpoonup p < p_1$: keine Explosion
- ▶ $p_1 : Explosion$
- ▶ $p_2 : keine Explosion$
- $ightharpoonup p > p_3$: Explosion

zwei Explosionsregime

- ▶ Kettenreaktion
- thermisch

Explosionen und Explosionsgrenzen

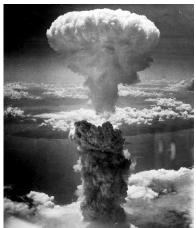
erste Explosionsgrenze, $p=p_1$

Ein genauerer Blick

- \blacktriangleright Kettenreaktion mit $k_{
 m V}>k_{
 m A}$
- ightharpoonup für $k_{
 m A}$ hauptsächlich Wandeffekte relevant, deshalb großer Einfluss der Dimension des Reaktionsgefäßes

zweite Explosionsgrenze, $p=p_2$

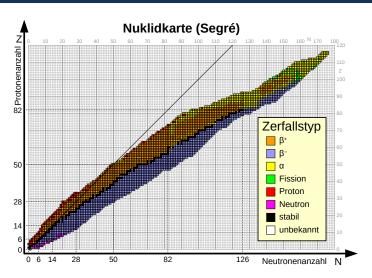
- Inaktivierung der Kettenträger durch Stöße
- Knallgasreaktion: verstärkte Bildung von HO₂ ·
 trimolekulare Reaktion unter Beteiligung des Stoßpartners M


dritte Explosionsgrenze, $p=p_3$

- Wärmestau: Energie nicht mehr schnell genug ableitbar
- Reaktionsgeschwindigkeit steigt mit steigender Temperatur, selbstverstärkender Prozess

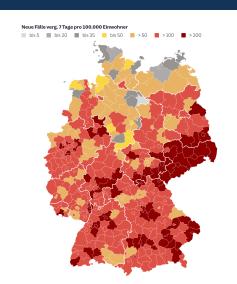
Kernspaltung

Eine Form der Kettenreaktion mit Verzweigung



Kernspaltung

Grund für den Neutronenüberschuss bei Spaltung großer Kerne



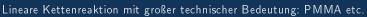
Wikipedia, Napy1kenobi/Sjlegg/Matt, CC-By-SA 3.0

Ausbreitung einer Pandemie

Eine (komplizierte) Form der Kettenreaktion mit Verzweigung

Daten von SZ.de/RKI; Stand: 09.12.2020, 10:00 Uhr

Übersicht



Lineare Kettenreaktionen

Verzweigte Kettenreaktionen und Explosionen

Kettenpolymerisation

Schrittweise Polymerisation

Allgemeines Schema der Ketten- oder Additionspolymerisation:

$$n \operatorname{CH}_2 = \operatorname{CHX} \longrightarrow (\operatorname{CH}_2 \operatorname{CHX})_n$$
 (70)

Häufig gefundendes Geschwindigkeitsgesetz der Polymerisation:

$$v = k[\mathbf{I}]^{1/2}[\mathbf{M}] \tag{71}$$

[I] – Konzentration des Initiators; [M] – Konzentration des Monomers

Drei essentielle Schritte:

- Kettenstart
- Kettenwachstum
- Kettenabbruch

Allgemeines Schema der Kettenpolymerisation

Kettenstart:	$I \xrightarrow{k_1} R \cdot + R \cdot$	(72)
--------------	---	------

$$M + R \cdot \xrightarrow{k_2} \cdot M_1 \tag{73}$$

Kettenwachstum:
$$M + \cdot M_1 \longrightarrow \cdot M_2$$

$$M + \cdot M_2 \longrightarrow \cdot M_3$$

$$M + \cdot M_{n-1} \xrightarrow{k_3} \cdot M_n \tag{74}$$

Kettenabbruch:
$$\cdot M_n + \cdot M_m \xrightarrow{k_4} M_{n+m}$$
 (75)

$$\cdot \mathbf{M}_n + \cdot \mathbf{M}_m \xrightarrow{k_5} \mathbf{M}_n + \mathbf{M}_m \tag{76}$$

Kettenübertragung:
$$M + \cdot M_n \xrightarrow{k_6} \cdot M + M_n$$
 (77)

Ziel:

► Geschwindigkeitsgesetz für die Polymerisation

vereinfachende Annahmen:

- Geschwindigkeit des Kettenwachstums unabhängig von der Kettenlänge
- ► Kettenabbruchmechanismen kinetisch äquivalent (Rekombination, Disproportionierung)
- Rate des Kettenabbruchs unabhängig von der Kettenlänge
- geschwindigkeitsbestimmender Schritt: Entstehung der Radikale aus dem Initiator I
- $lue{}$ Prozesse lassen sich in drei Ratenkonstanten zusammenfassen: Kettenstart $(k_{
 m S})$, Kettenwachstum $(k_{
 m W})$, Kettenabbruch $(k_{
 m A})$

Radikalerzeugung aus Initiator: geschwindigkeitsbestimmend

$$\frac{\mathrm{d}[\cdot \mathbf{M}]}{\mathrm{d}t} = 2fk_{\mathrm{S}}[\mathbf{I}] \quad \text{mit} \quad 0 \le f \le 1 \tag{78}$$

f – Bruchteil der Radikale, die ein Monomer radikalisieren (Kettenstart)

Kettenabbruch: bimolekulare Reaktion:

$$v_{\mathbf{A}} = k_{\mathbf{A}}[\cdot \mathbf{M}]^2 \tag{79}$$

Rekombination/Disproportionierung: vernichten zwei Radikale

$$\frac{\mathrm{d}[\cdot \mathbf{M}]}{\mathrm{d}t} = -2k_{\mathbf{A}}[\cdot \mathbf{M}]^2 \tag{80}$$

Quasistationarität für die Konzentration der Radikale:

$$\frac{\mathrm{d}[\cdot \mathbf{M}]}{\mathrm{d}t} = 2fk_{\mathrm{S}}[\mathbf{I}] - 2k_{\mathrm{A}}[\cdot \mathbf{M}]^2 = 0 \tag{81}$$

Beziehung für die Konzentration der Radikale:

$$2fk_{S}[I] - 2k_{A}[\cdot M]^{2} = 0$$

$$2k_{A}[\cdot M]^{2} = 2fk_{S}[I]$$
(82)

$$[\cdot \mathbf{M}]^2 = \frac{fk_{\mathbf{S}}}{k_{\mathbf{A}}}[\mathbf{I}] \tag{83}$$

$$[\cdot M] = \left(\frac{fk_{\rm S}}{k_{\rm A}}\right)^{1/2} [I]^{1/2}$$
 (84)

Geschwindigkeit des Kettenwachstums und damit der Polymerisation:

$$v_{\mathbf{W}} = -\frac{\mathbf{d}[\mathbf{M}]}{\mathbf{d}t} = k_{\mathbf{W}}[\mathbf{M}][\cdot \mathbf{M}]$$
(85)

Einsetzen der abgeleiteten Beziehung für $[\cdot M]$:

$$v_{\rm W} = k_{\rm W} \left(\frac{fk_{\rm S}}{k_{\rm A}}\right)^{1/2} [{\rm I}]^{1/2} [{\rm M}]$$
 (86)

Form stimmt mit dem empirischen Geschwindigkeitsgesetz überein phänomenologische Geschwindigkeitskonstante k:

$$k = k_{\rm W} \left(\frac{fk_{\rm S}}{k_{\rm A}}\right)^{1/2} \tag{87}$$

<u>Kettenpolymerisation</u>

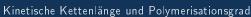
Kinetische Kettenlänge und Polymerisationsgrad

\triangleright kinetische Kettenlänge, ν

Verhältnis der Zahl verbrauchter Monomere zur Zahl der bei der Startreaktion gebildeten aktiven Teilchen; aktive Teilchen können dabei Radikale oder Jonen sein

- wichtiges Charakteristikum von Kettenpolymerisationen
- mit Hilfe der Geschwindigkeit des Kettenwachstums ausdrückbar
- Wichtig: Monomere werden genauso schnell verbraucht, wie die Ketten wachsen.
- Quasistationarität für Radikalkonzentration: Rate der Radikalbildung gleich Rate des Kettenabbruchs

Geschwindigkeit v_{W} des Kettenwachstums, v_{A} des Kettenabbruchs:


$$\nu = \frac{v_{\mathcal{W}}}{v_{\mathcal{A}}} = \frac{k_{\mathcal{W}}[\cdot \mathcal{M}][\mathcal{M}]}{2k_{\mathcal{A}}[\cdot \mathcal{M}]^2} = \frac{k_{\mathcal{W}}[\mathcal{M}]}{2k_{\mathcal{A}}[\cdot \mathcal{M}]}$$
(88)

Einsetzen der oben abgeleiteten Beziehung für [·M]:

$$\nu = \frac{k_{\rm W}[\rm M]}{2k_{\rm A} \left(\frac{fk_{\rm S}}{k_{\rm A}}\right)^{1/2} [\rm I]^{1/2}}$$
(89)

$$= \frac{k_{\rm W}[\rm M]}{2(fk_{\rm S}k_{\rm A})^{1/2}[\rm I]^{1/2}}$$
(90)

$$\nu = k \frac{[\mathrm{M}]}{\sqrt{[\mathrm{I}]}} \quad \text{mit} \quad k = \frac{1}{2} \frac{k_{\mathrm{W}}}{\sqrt{f k_{\mathrm{S}} k_{\mathrm{A}}}} \tag{91}$$

Annahme: Rekombination dominierend bei Kettenabbruch mittlere Anzahl $\langle n \rangle$ der Monomereinheiten pro Polymermolekül:

$$\langle n \rangle = 2\nu = 2k \frac{[\mathrm{M}]}{\sqrt{[\mathrm{I}]}} \quad \text{mit} \quad k = \frac{1}{2} \frac{k_{\mathrm{W}}}{\sqrt{f k_{\mathrm{S}} k_{\mathrm{A}}}}$$
 (92)

Parameter für kinetische Kontrolle des Polymerisationsgrades

- ► Konzentration des Intiators, [I]
- lacktriangle Geschwindigkeitskonstante der Startreaktion, $k_{
 m S}$

kinetische Kontrolle des Polymerisationsgrades

Je langsamer der Kettenstart und je geringer die Initiatorkonzentration, desto größer die Kettenlänge/mittlere Molmasse des Polymers.

Übersicht

Lineare Kettenreaktionen

Verzweigte Kettenreaktionen und Explosionen

Kettenpolymerisation

Schrittweise Polymerisation

Schrittweise Polymerisation

Schrittweise Polymerisation

- ▶ auch: Stufenwachstumsreaktion, Stufenwachstumspolymerisation
- keine Kettenreaktion

zwei große Klassen schrittweiser Polymerisationen:

- ▶ Polykondensation
- Polyaddition

Kettenpolymerisation

- ▶ Monomer reagiert immer nur mit einer Kette
- Wachstum auf existierende Ketten beschränkt

schrittweise Polymerisation

beliebige Mono- und Oligomere reagieren miteinander

Schrittweise Polymerisation

Voraussetzungen und Geschwindigkeitsgesetz

Voraussetzung für schrittweise Polymerisationen:

- ▶ funktionale Gruppen A und B, die miteinander reagieren können
- bimolekulare Reaktion

Geschwindigkeitsgesetz:

$$\frac{\mathrm{d[A]}}{\mathrm{d}t} = -k[\mathrm{A}][\mathrm{B}] \tag{93}$$

und da immer eine Gruppe A mit einer Gruppe B reagieren muss:

$$\frac{\mathrm{d[A]}}{\mathrm{d}t} = -k[\mathrm{A}]^2 \tag{94}$$

Annahme

- ▶ Reaktionsgeschwindigkeit unabhängig von der Kettenlänge
- ▶ k also während der gesamten Reaktion konstant

Zeitgesetz für die Elementarreaktion zweiter Ordnung:

$$[A] = \frac{[A]_0}{1 + kt[A]_0} \tag{95}$$

Anteil p der bereits reagiert habenden Monomere:

$$p = \frac{[A]_0 - [A]}{[A]_0} = \frac{kt[A]_0}{1 + kt[A]_0}$$
(96)

Schrittweise Polymerisation

Polymerisationsgrad

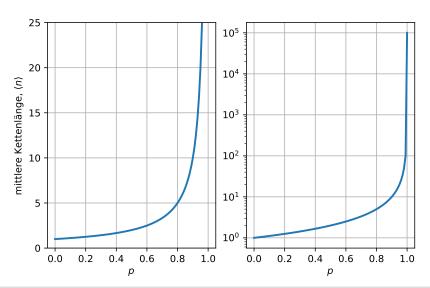
Polymerisationsgrad (mittlere Zahl der Monomereinheiten pro Polymer)

$$\langle n \rangle = \frac{[\mathbf{A}]_0}{[\mathbf{A}]} = \frac{1}{1-p} \tag{97}$$

Polymerisations grad als Funktion der Geschwindigkeitskonstante k:

$$\langle n \rangle = 1 + kt[A]_0 \tag{98}$$

Polymerisationsgrad der schrittweisen Polymerisation


Kettenlänge proportional zur Dauer der Reaktion.

Aber: Polymerisationsgrad wird erst für sehr hohe Ausbeuten groß

Schrittweise Polymerisation

 ${\sf Polymerisationsgrad}$

- Q Die Aufklärung des Mechanismus der Bromwasserstoff-Bildung ist ein Musterbeispiel guter wissenschaftlicher Praxis.
- Verzweigte Kettenreaktionen haben immer die Tendenz, zum explosiven Ablauf der Reaktion zu führen.
- Es gibt zwei Mechanismen für chemische Explosionen, deren physikalische Voraussetzungen unterschiedlich sind.
- Kettenpolymerisationen sind lineare Kettenreaktionen, die zu hohen Polymerisationsgraden führen.
- Schrittweise Polymerisation und Kettenpolymerisation lassen sich unterschiedlich kinetisch kontrollieren.